Team Accelerated Instruction, Initials and Problem-Solves Ability In Junior High School

Authors

  • Sri Adi Widodo Universitas Sarjanawiyata Tamansiswa, Yogyakarta, Indonesia
  • Agustina Sri Purnami Universitas Sarjanawiyata Tamansiswa, Yogyakarta, Indonesia
  • Rully Charitas Indra Prahmana Universitas Ahmad Dahlan, Yogyakarta, Indonesia

DOI:

https://doi.org/10.12928/ijeme.v1i2.6683

Keywords:

Team Accelerated Instruction, Direct Instruction, Initial ability, Problem solving ability.

Abstract

This research aims to test the effectiveness of the Team Accelerated Instruction (TAI) towards the ability of the students to solve mathematics problems based on their initial ability. This study is an experiment with 367 students involved as the research sample taken using the cluster technique. The research variable is the problem-solving ability, the initial ability, and the learning model. Analysis of variance was used to analyze the data which leads to the conclusions that (1) the TAI is more effective than the Direct Instruction (DI); (2) the students having moderate initial ability performed better compared to the lower and the higher initial ability; (3) among the students with moderate initial ability, TAI was more effective to be used than DI; and (4) in the implementation of TAI and DI, the problem solving ability of the students is relatively similar.

References

Anggraini, V.D., Mukhadis, A., & Muladi. (2013). Problem based learning, motivasi belajar, kemampuan awal, dan hasil belajar siswa SMK. Jurnal Ilmu Pendidikan, 19(2), 187-195.

BSNP. (2006). Lampiran Peraturan Menteri Pendidikan Nasional No 22 Tahun 2006. Jakarta: Depdiknas.

Budiyono. (2004). Statistika untuk penelitian. Solo: UNS Press.

Budiyono. (2015). Pengantar penilaian hasil belajar. Solo: UNS Press.

Dominowski, R.L. (2002). Teaching undergraduates. New Jersey: Lawrence Erlbaum Assosiates Publishers.

Hall, C. (2007). Case study 2: An evidence-based practice review report, a systematic review of the effectiveness of cooperative learning approaches in improving the mathematics achievement of students in mainstream secondary schools. UCL Doctorate in Educational & Child Psychology.

Heden, T. (2003). The reverse jigsaw: A process of cooperative learning and discussion. Teaching Sociology, 31(3), 325-332.

Hudoyo, H. (1990). Teori belajar untuk pengajaran matematika. Jakarta: Depdikbud.

Kurniawan, H. (2012). Upaya peningkatan efektivitas pembelajaran matematika melalui model pembelajaran kooperatif tipe Team Assisted Individualization (TAI) pada siswa kelas V SD Negeri Sidomulyo tahun pelajaran 2011/2012. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika UNY, pp. 370-376.

Lidinillah, D.A.M. (2014). Heuristik Dalam Pemecahan Masalah Matematika Dan Pembelajarannya Di Sekolah Dasar. Bandung: UPI.

NCTM. (2000). Principles and standards for school mathematics. Virginia: NCTM.

Nurhasanah, F., Kusumah, Y.S., & Sabandar, J. (2017). Concept of triangle: Examples of mathematical abstraction in two different contexts. International Journal on Emerging Mathematics Education, 1(1), 53-70.

Pardimin, & Widodo, S.A. (2016). Increasing skills of student in junior high school to problem solving in geometry with guided. Journal of Education and Learning, 10(4), 390-395.

Polya, G. (1973). How to solve it: A new aspect of mathematical method. New Jersey: Pricenton University Press.

Purnomo, E.A., & Mawarsari, V.D. (2014). Peningkatan kemampuan pemecahan masalah melalui model pembelajaran ideal problem solving berbasis project based learning. Jurnal Kajian Pendidikan Matematika, 1(1), 24-31.

Rahin, U. (2009). Metode bervariasi dapat meningkatkan prestasi belajar matematika siswa Kelas V SD Negeri I Olo-Oloho Kecamatan Pakue Kabupaten Kolaka Utara. Majalah Ilmiah Pendidikan Matematika dan IPA, 8(1), 18-27.

Reigeluth & Merrill. (1979). Classes of instructional variables. Educational Technology, 19(3), 5-24.

Robinson, A. (1991). Cooperative learning and the academically talented student. Washington, DC: The National Research Center on the Gifted and Talented (NRC-G/T-9106).

Slavin, R.E. (1992). Success for all: A relentless approach to prevention and early intervention in elementary schools. ERS Monograph.

Slavin, R.E., & Lake, C. (2008). Effective programs in elementary mathematics: A best-evidence synthesis. Review of Educational Research, 78(3), 427-515.

Suryana. (2015). Penerapan pendekatan pemecahan masalah melalui soal cerita pecahan untuk meningkatkan hasil belajar siswa kelas IV SD N Ciherang Kecamatan Pamulihan Kabupaten Sumedang. Jurnal Cakrawala Pendas, 1(2), 12-18.

Triyanto. (2009). Mendesain model pembelajaran inovatif dan progresif. Jakarta: kencana.

Widjajanti, D.B. (2009). Kemampuan pemecahan masalah matematis mahasiswa calon guru matematika: Apa dan bagaimana mengembangkannya. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika FMIPA UNY, pp: 402-413.

Widodo, S.A. (2013). Analisis kesalahan dalam pemecahan masalah divergensi tipe membuktikan pada mahasiswa matematika. Jurnal Pendidikan dan Pengajaran, 46(2), 106-113.

Widodo, S.A. (2014). Error analysis of guardians student in understanding the problem of divergence. In Proceeding of International Conference on Research, Implementation and Education of Mathematics and Sciences 2014 (pp. 467-472). Yogyakarta: Universitas Negeri Yogyakarta.

Widodo, S.A. (2017). Development of teaching materials algebraic equation to improve problem solving. Infinity, 6(1), 61-70.

Widodo, S.A., & Sujadi, A.A. (2015). Analisis kesalahan mahasiswa dalam memecahkan masalah trigonometri. Jurnal Sosiohumaniora, 1(1), 51-63.

Windari, F., Dwina, F., & Suherman. (2014). Meningkatkan kemampuan pemecahan masalah matematika siswa Kelas VIII SMP N 8 Padang tahun pelajaran 2013/2014 dengan menggunakan strategi pembelajaran inkuiri. Jurnal Pendidikan Matematika, 3(2), 25-28.

Downloads

Published

2017-08-18

How to Cite

Widodo, S. A., Purnami, A. S., & Prahmana, R. C. I. (2017). Team Accelerated Instruction, Initials and Problem-Solves Ability In Junior High School. International Journal on Emerging Mathematics Education, 1(2), 193–204. https://doi.org/10.12928/ijeme.v1i2.6683