A Novel Forecasting Based on Automatic-optimized Fuzzy Time Series

Yusuf Priyo Anggodo, Wayan Firdaus Mahmudy

Abstract


In this paper, we propose a new method for forecasting based on automatic-optimized fuzzy time series to forecast Indonesia Inflation Rate (IIR). First, we propose the forecasting model of two-factor high-order fuzzy-trend logical relationships groups (THFLGs) for predicting the IIR. Second, we propose the interval optimization using automatic clustering and particle swarm optimization (ACPSO) to optimize the interval of main factor IIR and secondary factor SF, where SF = {Customer Price Index (CPI), the Bank of Indonesia (BI) Rate, Rupiah Indonesia /US Dollar (IDR/USD) Exchange rate, Money Supply}. The proposed method gets lower root mean square error (RMSE) than previous methods.

Keywords


fuzzy logical relationship; two-factor high-order fuzzy-trend; logical relationship groups; automatic-optimized; similarity measures

Full Text:

PDF


DOI: http://dx.doi.org/10.12928/telkomnika.v16i4.8430

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Universitas Ahmad Dahlan

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats