Modelling Optical Waveguide Bends by the Method of Lines

Ary - Syahriar, Nabil Rayhan Syahriar, Jusman Syafii Djamal


A rigorous analytical and semi analytical method of lines has been used to calculate the transverse-electric field attenuation coefficient of guided mode as it travels in waveguide bends structure. Both approaches then were compared to get a better understanding on how the attenuation behaves along single curve waveguides with constant radius of curvature. The Helmholtz Equation in polar coordinate was transformed into a curvalinier coordinate to simulate the waveguide bends using the method of line analysis. The simple absorption boundary conditions are used into the method of lines to demonstrate evanescent field of the guided mode nature as its travels in waveguide bends structures. The results show that a reasonable agreement between both theoretical approaches. 


Integrated optics, Waveguide bends, absorption coefficients, method of lines



B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).

M.Zirngibl, C.H.Joyner, L.W.Stulz,Th.Gaiffe, C.Dragone, “Polarization independent 8 × 8 waveguide grating multiplexers on InP,” Electron. Lett. 29, 201–202 (1993).

R. R. Hayes and D. Yap, “GaAs spiral optical waveguides for delay-line applications,” J. Lightwave Technol. 11, 523–528 (1993).

X. Jiang, W. Qi, H. Zhang, Y. Tang, Y. Hao, J. Yang, M. Wang, “Loss crosstalk 1 × 2 thermooptic digital optical switch with integrated S-bend attenuator,” IEEE Photon. Technol. Lett. 18, 610–612 (2006).

F. Ladouceur, J.D. Love, “Silica-based buried channel waveguides and devices”, Chapman & Hall, London 1996.

W.P. Huang (Ed), “Methods for modeling and simulation of guided-wave optoelectronic devices : part I: modes and couplings”, EMW Publishing, Cambridge, Massachusetts, 1995.

S.M. Saad, “Review of numerical methods for the analysis of arbitrarily-shaped microwave and optical dielectric waveguides”, IEEE Trans. on Microwave Theory and Tech., vol. MTT-33, 894-899, 1985.

T.Itoh (Ed). “Numerical techniques for microwave and millimeter-wave passive structures”, John Wiley & Sons, New York 1989.

U.Rogge, R. Pregla, “Method of lines for the analysis of dielectric waveguides”, IEEE J.Lightwave Technol., vol. LT-11, 2015-2020, 1993

E.A.J.Marcatili, “Bends in optical dielectric guides”, Bell Syst. Tech. J, vol. 48, 2103-2132, 1969.

W.J. Minford, S.K. Korotky, R.D. Alferness, “Low-loss Ti:LiNbO3 waveguide bends at =1.3 m”, IEEE J. Quantum Electron., vol. QE-18, 1802-1806, 1982.

D.L. Lee, “Electromagnetic principles of integrated optics”, John Wiley & sons, New York, 1986.3.1.

D. Marcuse, “Length optimisation of an S-shaped transition between offset optical waveguides”, Appl. Opt., vol. 17, 763-768, 1978.

D. Marcuse, “Bending losses of the asymmetric slab waveguide”, Bell Syst. Tech. J. vol. 50, 2551-2563, 1971

S.J. Garth, “Mode behaviour on bent planar dielectric waveguides”, IEE Proc. Optoelectron., vol. 142, 115-120, 1995

T.G. Moore, J.G. Blaschak, A. Taflove, G.A. Kriegsmann, “Theory and application of radiation boundary operators”, IEEE Trans. Antenna and Prop., vol. 36, 1797-1812, 1988.

J. Yamauchi, S. Kikuchi, T. Hirooka, M. Nakano, “Beam propagation analysis of bent step-index slab waveguide”, Elect. Lett., vol. 26, 822-824, 1990.

3.17. M. Rivera, “Lowest-order mode transmission in multimode dielectric S-bends”, Opt. Quantum Electron., vol. 29, 323-333, 1997.

J. Saijonmaa, D. Yevick, “Beam-propagation analysis of loss in bent optical waveguides and fibers”, J. Opt. Soc. Amer., vol. 73, 1785-1791, 1983.



Copyright (c) 2018 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
online system:
Phone: +62 (274) 563515, 511830, 379418, 371120 ext: 3208
Fax    : +62 (274) 564604