Flow Fair Sampling Based on Multistage Bloom Filters

Liu Yuanzhen, Huang Shurong, Liu Jianzhao

Abstract


Network traffic distribution is heavy-tailed. Most of network flows are short and carry very few packets, and the number of large flows is small. Traditional random sampling tends to sample more large flows than short ones. However, many applications depend on per-flow traffic other than just large flows. A flow fair sampling based on multistage Bloom filters is proposed. The total measurement interval is divided into n child time intervals. In each child time interval, employ multistage Bloom filters to query the incoming packet’s flow whether exists in flow information table or not, if exists, sample the packet with static sampling rate which is inversely proportional to the estimation flow traffic up to the previous time interval. If it is a new flow’s first packet, create its flow information and insert it into the multistage Bloom filters. The results show that the proposed algorithm is accurate especially for short flows and easy to extend.


Keywords


network traffic; short flow; Multistage Bloom filters; flow fair sampling

Full Text:

PDF


DOI: http://dx.doi.org/10.12928/telkomnika.v14i3.3648

Article Metrics

Abstract view : 257 times
PDF - 278 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View TELKOMNIKA Stats