Analysis of Stemming Influence on Indonesian Tweet Classification

Ahmad Fathan Hidayatullah, Chanifah Indah Ratnasari, Satrio Wisnugroho


Stemming has been commonly used by some researchers in natural language processing area such as text mining, text classification, and information retrieval. In information retrieval, stemming may help to raise retrieval performance. However, there is an indication that stemming does not hand over significant influence toward the accuracy in text classification. Therefore, this paper analyzes further research about the influence of stemming on tweet classification in Bahasa Indonesia. This work examines about the accuracy result between two conditions by involving stemming and without involving stemming in pre-processing task for tweet classification. The contribution of this research is to find out a better pre-processing task in order to obtain good accuracy in text classification. According to the experiments, it is observed that all accuracy results in tweet classification tend to decrease. Stemming task does not raise the accuracy either using SVM or Naive Bayes algorithm. Therefore, this work summarized that stemming process does not affect significantly towards the accuracy performance.

Full Text:



Article Metrics

Abstract view : 327 times
PDF - 337 times


  • There are currently no refbacks.

Copyright (c) 2019 Universitas Ahmad Dahlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604