Spark plug failure detection using Z-freq and machine learning

Nor Azazi Ngatiman, Mohd Zaki Nuawi, Azma Putra, Isa S. Qamber, Tole Sutikno, Mohd Hatta Jopri

Abstract


Preprogrammed monitoring of engine failure due to spark plug misfire can be traced using a method called machine learning. Unluckily, a challenge to get a high-efficiency rate because of a massive volume of training data is required. During the study, these failure-generated were enhanced with a novel statistical signal-based analysis called Z-freq to improve the exploration. This study is an exploration of the time and frequency content attained from the engine after it goes under a specific situation. Throughout the trial, the misfire was formed by cutting the voltage supplied to simulate the actual outcome of the worn-out spark plug. The failure produced by fault signals from the spark plug misfire were collected using great sensitivity, space-saving and a robust piezo-based sensor named accelerometer. The achieved result and analysis indicated a significant pattern in the coefficient value and scattering of Z-freq data for spark plug misfire. Lastly, the simulation and experimental output were proved and endorsed in a series of performance metrics tests using accuracy, sensitivity, and specificity for prediction purposes. Finally, it confirmed that the proposed technique capably to make a diagnosis: fault detection, fault localization, and fault severity classification.

Full Text:

PDF


DOI: http://dx.doi.org/10.12928/telkomnika.v19i6.22027

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats