Solid Waste Classification Using Pyramid Scene Parsing Network Segmentation and Combined Features

Khadijah Khadijah, Sukmawati Nur Endah, Retno Kusumaningrum, Rismiyati Rismiyati, Priyo Sidik Sasongko, Iffa Zainan Nisa

Abstract


Solid waste problem become a serious issue for the countries around the world since the amount of generated solid waste increase annually. As an effort to reduce and reuse of solid waste, a classification of solid waste image is needed  to support automatic waste sorting. In the image classification task, image segmentation and feature extraction play important roles. This research applies recent deep leaning-based segmentation, namely PSPNet (Pyramid Scene Parsing Network). We also use various combination of  image feature extraction (color, texture and shape) to search for the best combination of features.  As a comparison, we also perform experiment without using segmentation to see the effect of PSPNet. Then, SVM is applied in the end as classification algorithm. Based on the result of experiment, it can be concluded that generally applying segmentation provide better source for feature extraction, especially in color and shape feature, hence increase the accuracy of classifier. It is also observed that the most important feature in this problem is color feature. However, the accuracy of classifier increase if additional features are introduced. The highest accuracy of 76.49% is achieved when PSPNet segmentation is applied and all combination of features are used.


Keywords


Waste classification; Segmentation; PSPNet; Feature extraction; SVM



DOI: http://dx.doi.org/10.12928/telkomnika.v19i6.18402

Article Metrics

Abstract view : 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats