ATLAS: Adaptive Text Localization Algorithm in High Color Similarity Background

LihFong Wong, Mohd Yazid Idris


One of the major problems that occur in text localization process is the issue of color similarity between text and background image. The limitation of localization algorithms due to high color similarity is highlighted in several research papers. Hence, this research focuses towards the improvement of text localizing capability in high color background image similarity by introducing an adaptive text localization algorithm (ATLAS). ATLAS is an edge-based text localization algorithm that consists of two parts.  Text-Background Similarity Index (TBSI) being the first part of ATLAS, measures the similarity index of every text region while the second, Multi Adaptive Threshold (MAT), performs multiple adaptive thresholds calculation using size filtration and degree deviation for locating the possible text region. In this research, ATLAS is verified and compared with other localization techniques based on two parameters, localizing strength and precision. The experiment has been implemented and verified using two types of datasets, generated text color spectrum dataset and Document Analysis and Recognition dataset (ICDAR). The result shows ATLAS has significant improvement on localizing strength and slight improvement on precision compared with other localization algorithms in high color text-background image.


Text Localization; Color Similarity; Adaptive Threshold

Full Text:



Article Metrics

Abstract view : 317 times
PDF - 305 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604