Using machine learning for the classification of the modern Arabic poetry

Munef Abdullah Ahmed, Raed Abdulkareem Hasan, Ahmed Hussien Ali, Mostafa Abdulghafoor Mohammed


In recent years, working on text classification and analysis of Arabic texts using machine learning has seen some progress, but most of this research has not focused on Arabic poetry. Because of some difficulties in the analysis of Arabic poetry, it was required the use of standard Arabic language on which “Al Arud”, the science of studying poetry is based. This paper presents an approach that uses machine learning for the classification of modern Arabic poetry into four types: love poems, Islamic poems, social poems, and political poems. Each of these species usually has features that indicate the class of the poem. Despite the challenges generated by the difficulty of the rules of the Arabic language on which this classification depends, we proposed a new automatic way of modern Arabic poems classification to solve these issues. The recommended method is suitable for the above-mentioned classes of poems. This study used Naïve Bayes, Support Vector Machines, and Linear Support Vector for the classification processes. Data preprocessing was an important step of the approach in this paper, as it increased the accuracy of the classification. 


classification of Arabic poems; machine learning algorithms; modern Arabic poems;


Article Metrics

Abstract view : 73 times


  • There are currently no refbacks.

Copyright (c) 2019 Universitas Ahmad Dahlan

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus, 9th Floor, LPPI Room
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120 ext. 4902, Fax: +62 274 564604

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.