Optimization of YOLOv4-Tiny Algorithm for Vehicle Detection and Vehicle Count Detection Embedded System
DOI:
https://doi.org/10.26555/jiteki.v10i3.29693Keywords:
ARM Processor, YOLO, Median Filter, Grayscale, Object Detection, SensorAbstract
Currently, the implementation of object detection systems in the traffic sector is minimal. CCTV cameras on highways and toll roads are primarily used to monitor traffic conditions and document violations. However, the data recorded by these cameras can be further utilized to enhance traffic management systems. The author proposes a vehicle detection and counting system using YOLOv4-Tiny. The research aims to improve vehicle detection and counting accuracy by employing a median filter and grayscale processing, which simplify object detection. The proposed YOLOv4-Tiny algorithm has shown impressive results on various datasets, including MAVD, GRAM-RTM, and author dataset. The system achieved a detection accuracy of 98.95% on the MAVD dataset, 99.5% on the GRAM-RTM dataset (comparable to YOLOv4), and 99.1% on the author dataset. Furthermore, the system operates at 25 frames per second (FPS), a notably high rate compared to other methods. While the system demonstrates excellent accuracy in counting cars, it encounters some accuracy loss with other vehicle classifications. The author concludes that the system is highly suitable for real-world applications but notes that inaccurate labeling can lead to vehicle counting errors.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rachmat Muwardi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License