Optimizing 2.4GHz Wireless Networks in Shrimp Ponds with Particle Swarm Optimization

Authors

  • Syahfrizal Tahcfulloh Department of Electrical Engineering, Universitas Borneo Tarakan
  • Diana Maulianawati Department of Aquaculture, Universitas Borneo Tarakan https://orcid.org/0000-0001-7867-5401
  • Dhimas Wiharyanto Department of Waters Resources Management, Universitas Borneo Tarakan

DOI:

https://doi.org/10.26555/jiteki.v10i4.30236

Keywords:

Aquaculture-WSN, International Telecommunication Union (ITU), Particle-swarm-optimization Pathloss, Polynomial, Root-mean-square-error

Abstract

This paper focuses on enhancing wireless sensor networks (WSNs) for monitoring water quality in aquaculture, specifically shrimp ponds, by improving pathloss (PL) models. Radio wave propagation in such environments is challenging due to unpredictable signal attenuation caused by factors like distance, antenna height, terrain, vegetation, and weather conditions. Reliable PL modeling is essential for optimizing network performance. The research evaluates the performance of theoretical PL models, including ITU, Fitting-ITU (FITU), and Weissberger, by comparing their predictions with actual 2.4GHz radio frequency (RF) measurements. Statistical metrics such as root-mean-square error (RMSE) and the coefficient of determination (R²) were used to assess model accuracy. Initial results showed significant discrepancies, with an average RMSE of 28.7dB and an R² of only 5%. To address these issues, the study employed modification techniques (quadratic and cubic polynomial adjustments) and optimization methods, particularly particle swarm optimization (PSO). These approaches refined the theoretical models, aligning them more closely with real-world data. The optimized PSO model reduced the RMSE to 8.34dB and further to 1.89dB, while improving R² from 5% to 95.6%, demonstrating a near-perfect fit. This study highlights the critical role of PSO and similar techniques in bridging the gap between theoretical predictions and practical applications, ensuring more reliable WSN performance in aquaculture environments. The findings contribute to the development of robust, high-accuracy models tailored to the unique challenges of aquaculture settings.

References

[1] FAO, “The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation,” Rome, FAO, 2022, https://doi.org/10.4060/cc0461en

[2] V. Biazi and C. Marques, “Industry 4.0-Based Smart Systems in Aquaculture: A Comprehensive Review,” Aquacultural Engineering, vol. 103, 2023, https://doi.org/10.1016/j.aquaeng.2023.102360.

[3] BPS, “Produksi Perikanan Tangkap di Perairan Umum Menurut Komoditas Utama (Ton), 2019-2020,” 2023, [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MTUxNyMy/produksi-perikanan-tangkap-di-perairan-umum-menurut-komoditas-utama--ton-.html.

[4] BPS Provinsi Kalimantan Utara, “Produksi Perikanan Budidaya Menurut Komoditas Utama,” 2024, [Online]. Available: https://kaltara.bps.go.id/indicator/56/362/1/produksi-perikanan-budidaya-menurut-komoditas-utama.html.

[5] P. K. Singh and J. Kaur, “A Review of Routing Techniques for Different Applications in Wireless Sensor Network,” 2nd International Conference on Technological Advancements in Computational Sciences, pp. 174-179, 2022, https://doi.org/10.1109/ICTACS56270.2022.9988059.

[6] A. Gupta, T. Gulati, and A. K. Bindal, “WSN Based IoT Applications: A Review,” 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing, pp. 1-6, 2022, https://doi.org/10.1109/ICETET-SIP-2254415.2022.9791495.

[7] N. A. M. Jais, A. F. Abdullah, M. S. M. Kassim, M. M. A. Karim, M. Abdulsalam, and N. A. Muhadi, “Improved Accuracy in IoT-Based Water Quality Monitoring for Aquaculture Tanks Using Low-Cost Sensors: Asian Seabass Fish Farming,” Heliyon, vol. 10, no. 8, 2024, https://doi.org/10.1016/j.heliyon.2024.e29022.

[8] E. C. Reuben and L. Y. Meng, “GUI Composer: A Lightweight GUI Software Development Framework for WSN, I.O.T and Control System Application,” 5th International Conference on Mechatronics, Robotics and Automation, pp. 69-73, 2022, https://doi.org/10.1109/ICMRA56206.2022.10145621.

[9] E. M. Jovanovska and D. Davcev, “No Pollution Smart City Sightseeing Based on WSN Monitoring System,” Sixth International Conference on Mobile and Secure Services, pp. 1-6, 2020, https://doi.org/10.1109/MobiSecServ48690.2020.9042959.

[10] O. B. Gonzalez and J. Chilo, “WSN IoT Ambient Environmental Monitoring System,” 5th International Symposium on Smart and Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems, pp. 1-4, 2020, https://doi.org/10.1109/IDAACS-SWS50031.2020.9297085.

[11] D. S. Simbeye, J. Zhao, and S. Yang, “Design and Deployment of Wireless Sensor Networks for Aquaculture Monitoring and Control Based on Virtual Instruments,” Computers and Electronics in Agriculture, vol. 102, pp. 31-42, 2014, https://doi.org/10.1016/j.compag.2014.01.004.

[12] W. Kanakri and L. A. Tawalbeh, “WSN-Based Interactive Dynamic Maps for Guidance in Al-Masjid Al-Haram,” Sixth International Conference on Internet of Things: Systems, Management and Security, pp. 326-330, 2019, https://doi.org/10.1109/IOTSMS48152.2019.8939245.

[13] R. Moorthy H., V. Bangera, Z. Amrin, N. J. Avinash, and K. Rao N.S., “WSN in Defence Field: A Security Overview,” 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), pp. 258-264, 2020, https://doi.org/10.1109/I-SMAC49090.2020.9243406.

[14] A. J. Simla and R. Chakravarthy, “Review on Application Layer Protocol for IoT Enabled Agricultural Intrusion Detection,” International Conference on Artificial Intelligence and Smart Systems, pp. 1170-1175, 2021, https://doi.org/10.1109/ICAIS50930.2021.9395843.

[15] P. Lavanya and R. Sudha, “A Study on WSN Based IoT Application in Agriculture,” 3rd International Conference on Communication and Electronics Systems, pp. 1046-1054, 2018, https://doi.org/10.1109/CESYS.2018.8724020.

[16] R. Pavithra and D. Arivudainambi, “Towards Efficient Sensor Placement for Industrial Wireless Sensor Network,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 6, no. 2, 2020, pp. 58-69, https://doi.org/10.26555/jiteki.v6i2.19134.

[17] A. Harun, D. L. Ndzi, M. F. Ramli, A. Y. M. Shakaff, M. N. Ahmad, L. M. Kamaruddin, A. Zakaria, and Y. Yang, “Signal Propagation in Aquaculture Environtment for Wireless Sensor Network Applications,” Progress in Electromagnetics Research, vol. 131, pp. 477-494, 2012.

[18] B. Shi, V. Sreeram, D. Zhao, S. Duan, and J. Jiang, “A Wireless Sensor Network-Based Monitoring System for Freshwater Fishpond Aquaculture,” Biosystems Engineering, vol. 172, pp. 57-66, 2018, https://doi.org/10.1016/j.biosystemseng.2018.05.016.

[19] P. D. P. Adi, I. Ardi, N. Plamonia, Y. Wahyu, A. Mariana L., H. Novita, D. Mahabror, R. Zulkarnain, A. Wirawan, Y. Prastiyono, Waryanto, S. A. Budi, Susilo, R. Rahmatullah, and A. Kitagawa, “Analysis of IoT-LoRa to Improve LoRa Performance for Vaname Shrimp Farming Monitoring System,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 10, no. 1, 2024, pp. 99-122, https://doi.org/10.26555/jiteki.v10i1.27598.

[20] B. Dhanavanthan, T. R. Rao, and G. Mahesh, “RF Propagation Experiments in Agricultural Fields and Gardens for Wireless Sensor Communications,” Progress in Electromagnetics Research C. vol. 39, pp. 103-118, 2013, https://doi.org/10.2528/PIERC13030710.

[21] F. Li, H. Wu, Y. Miao, and L. Zhu, “A Research on The Radio Signal Propagation Characteristics in Corn Field,” BioTechnology: An Indian Journal, vol. 8, no. 10, pp. 1347-1352, 2013.

[22] X. Xu, Z. Zhang, Y. Xu, Z. Yang, Y. Chen, Z. Liang, J. Zhou, and J. Zheng, “Measurement and Analysis of Wireless Propagative Model of 433MHz and 2.4GHz Frequency in Southern China Orchards,” IFAC-PapersOnLine. vol. 51, no. 17, pp. 695-699, 2018, https://doi.org/10.1016/j.ifacol.2018.08.115.

[23] D. Cama-Pinto, M. Damas, J. A. Holgado-Terriza, F. Gómez-Mula, and A. Cama-Pinto, “Path Loss Determination Using Linear and Cubic Regression Inside a Classic Tomato Greenhouse,” Int. J. Environ Res Public Health, vol. 16, no. 10, 2019, https://doi.org/10.3390/ijerph16101744.

[24] Z. Nadir, “Empirical Pathloss Characterization for Oman,” 2012 Computing, Communications and Applications Conference, pp. 133-137, 2012, https://doi.org/10.1109/ComComAp.2012.6154017.

[25] H. M. Jawad, A. M. Jawad, R. Nordin, S. K. Gharghan, N. F. Abdullah, M. Ismail, and M. J. A. A. Shaeer, “Accurate Empirical Path-Loss Model Based on Particle Swarm Optimization for Wireless Sensor Networks in Smart Agriculture,” IEEE Sensors Journal, vol. 20, no. 1, pp. 552-561, 2019, https://doi.org/10.1109/jsen.2019.2940186.

[26] M. Garah, H. Oudira, L. Djouane, and N. Hamdiken, “Particle Swarm Optimization for the Path Loss Reduction in Suburban and Rural Area,” International Journal of Electrical and Computer Engineering, vol. 7, no. 4, pp. 2125-2131, 2017, https://doi.org/10.11591/ijece.v7i4.pp2125-2131.

[27] O. R. Omasheye, S. Azi, J. Isabona, A. L. Imoize, C. T. Li, and C. C. Lee, “Joint Random Forest and Particle Swarm Optimization for Predictive Pathloss Modeling of Wireless Signals from Cellular Networks, Future Internet, vol. 14, no. 12, pp. 1-26, 2022, https://doi.org/10.3390/fi14120373.

[28] S. Pawar and M. Venkatesan, “A Novel Pathloss Prediction and Optimization Approach Using Deep Learning in Millimeter Wave Communication Systems,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 9, 2024, https://doi.org/10.1016/j.prime.2024.100737.

[29] International Telecommunication Union, “Attenuation in vegetation,” ITU-R Recommendation, p. 833-9, 2021, https://cir.nii.ac.jp/crid/1571698600730941696.

[30] S. David Joseph, B. Gavin and E. A. Ball, “28-GHz rural close-to-ground propagation field test results and models,” IEEE Open Journal of Antennas and Propagation, vol. 5, no. 3, pp. 543-556, 2024, https://doi.org/10.1109/OJAP.2024.3370968.

[31] M. A. Weissberger, “An initial critical summary of models for predicting the attenuation of radio waves by trees,” https://doi.org/10.21236/ADA118343.

[32] E. Alozie, A. Abdulkarim, I. Abdullahi, A. D. Usman, N. Faruk, I. -F. Y. Olayinka, K. S. Adewole, A. A. Oloyede, H. Chiroma, O. A. Sowande, L. A. Olawoyin, S. Garba, A. L. Imoize, A. Musa, Y. A. Adediran, and L. S. Taura, “A review on rain signal attenuation modeling, analysis and validation techniques: advances, challenges and future direction,” Sustainability, vol. 14, no. 18, pp. 11744, 2022, https://doi.org/10.3390/su141811744.

[33] Y. H. Lee, F. Dong, and Y. S. Meng, “Near Sea-Surface Mobile Radiowave Propagation at 5 GHz: Measurements and Modeling,” Radioengineering, vol. 23, no. 3, pp. 824-830, 2014, https://www.radioeng.cz/fulltexts/2014/14_03_0824_0830.pdf.

[34] J. F. d. Souza, F. N. B. Magno, Z. A. Valente, J. C. Costa, and G. P. S. Cavalcante, “Mobile Radio Propagation Along Mixed Paths in Forest Environment Using Parabolic Equation,” Microwave and Optical Technology Letters, vol. 51, no. 4, pp. 1133-1136, 2009, https://doi.org/10.1002/mop.24212.

[35] S. Tahcfulloh and E. Riskayadi, “Optimized Suitable Propagation Model for GSM 900 Path Loss Prediction,” TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 14, no. 1, pp. 154-162, 2015, https://doi.org/10.11591/telkomnika.v14i1.7470.

[36] S. Tahcfulloh, “The Effects of Rain Attenuation and Interference to BFWA System Performance Using Site Diversity-Adaptive Coded Modulation in Indonesia Area,” Asia-Pacific Conference on Applied Electromagnetics, pp. 1-5, 2010, https://doi.org/10.1109/APACE.2010.5719774.

[37] M. Amien, W. Widiatmaka, K. Nirmala, S. Pertiwi, and W. Ambarwulan, “Analisis Kualitas Lingkungan dan Produktivitas Tambak Budidaya Udang Windu Sistem Teknologi Tradisional di Kabupaten Bulungan,” Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology, vol. 18, no. 2, pp. 93-104, 2022, https://doi.org/10.14710/ijfst.18.2.93-104.

[38] M. T. Hidayat, A. Wicaksono, and A. D. Siswanto, “Data Acquisition Tree Height and Areal Parameters of Mangrove Vegetation Using UAV,” BIO Web of Conferences, vol. 89, pp. 1-10, 2024, https://doi.org/10.1051/bioconf/20248907002.

[39] N. Niagara, M. Yusuf, and F. Muhammad, “The Characteristics of Mangrove Species Are Based on Water Conditions in Karimunjawa Nasional Park,” E3S Web of Conferences, vol. 317, pp. 1-9, 2021, https://doi.org/10.1051/e3sconf/202131704034.

[40] Badan Pusat Statistik Provinsi Kalimantan Utara, 2023, [Online]. Available: https://kaltara.bps.go.id/id/statistics-table/2/MzQjMg==/jumlah-curah-hujan-menurut-bulan-dan-stasiun.html.

[41] G. P. N. Hakim, M. H. Habaebi, S. F. Toha, M. R. Islam, S. H. B. Yusoff, E. Y. T. Adesta, and R. Anzum, “Near Ground Pathloss Propagation Model Using Adaptive Neuro Fuzzy Inference System for Wireless Sensor Network Communication in Forest, Jungle and Open Dirt Road Environments,” Sensors, vol. 22, pp. 3267, 2022, https://doi.org/10.3390/s22093267.

[42] A. B. Abadi and S. Tahcfulloh, “Digital Image Processing for Height Measurement Application Based on Python OpenCV and Regression Analysis,” JOIV: International Journal on Informatics Visualization, vol. 6, no. 4, pp. 763-770, 2022, https://doi.org/10.30630/joiv.6.4.1013.

[43] H. K. Thakkar, H. Shukla, and P. K. Sahoo, “Chapter 2 - Metaheuristics in classification, clustering, and frequent pattern mining, Editor(s): Sushruta Mishra, Hrudaya Kumar Tripathy, Pradeep Kumar Mallick, Arun Kumar Sangaiah, Gyoo-Soo Chae, In Cognitive Data Science in Sustainable Computing, Cognitive Big Data Intelligence with a Metaheuristic Approach,” Academic Press, pp. 21-70, 2022, https://doi.org/10.1016/B978-0-323-85117-6.00005-4.

[44] H. Zhang and D. Li, “Applications of Computer Vision Techniques to Cotton Foreign Matter Inspection: A Review,” Computers and Electronics in Agriculture, vol. 109, pp. 59-70, 2014, https://doi.org/10.1016/j.compag.2014.09.004.

[45] R. Umarani and V. Selvi, “Particle Swarm Optimization-evolution, Overview and Applications,” International Journal of Engineering Science and Technology, vol. 2, no. 7, pp. 2802-2806, 2010, https://www.sid.ir/paper/630919/en.

[46] N. Savage, D. Ndzi, A. Seville, E. Vilar, and J. Austin, “Radio wave propagation through vegetation: Factors influencing signal attenuation,” Radio Science, vol. 38, no. 5, pp. 1088, 2003, https://doi.org/10.1029/2002RS002758.

[47] M. R. Saoum and S. K. Sarkar, “Monitoring mangrove forest change and its impacts on the environment,” Ecological Indicators, vol. 159, 2024, https://doi.org/10.1016/j.ecolind.2024.111666.

[48] Samiksha S. V., P. Vethamony, P. K. Bhaskaran, P. Pednekar, M. Jishad, and R. A. James, “Attenuation of wave energy due to mangrove vegetation off mumbai, india,” Energies, vol. 12, no. 22, pp. 4286, 2019, https://doi.org/10.3390/en12224286.

[49] International Telecommunication Union (ITU), “Propagation data and prediction methods required for the design of terrestrial line-of-sight systems,” ITU-R Recommendation, p. 530-17, 2020, https://extranet.itu.int/brdocsearch/R-REC/R-REC-P/R-REC-P.530/R-REC-P.530-16-201507-S/R-REC-P.530-16-201507-S!!PDF-E.pdf.

[50] H. A. H. Alobaidy, M. Jit Singh, M. Behjati, R. Nordin and N. F. Abdullah, “Wireless transmissions, propagation and channel modelling for IoT technologies: applications and challenges,” IEEE Access, vol. 10, pp. 24095-24131, 2022, https://doi.org/10.1109/ACCESS.2022.3151967.

[51] Z. Shakir, A. Al-Thaedan, R. Alsabah, et al., “Performance evaluation for RF propagation models based on data measurement for LTE networks,” Int. J. Inf. Tecnol, vol. 14, pp. 2423–2428, 2022, https://doi.org/10.1007/s41870-022-01006-8.

[52] M. K. Elmezughi, O. Salih, T. J. Afullo, and K. J. Duffy, “Comparative analysis of major machine-learning-based path loss models for enclosed indoor channels,” Sensors, vol. 22, no. 13, pp. 4967, 2022, https://doi.org/10.3390/s22134967.

[53] C. Wang, “A distributed particle-swarm-optimization-based fuzzy clustering protocol for wireless sensor networks,” Sensors, vol. 23, no. 15, pp. 6699, 2023, https://doi.org/10.3390/s23156699.

[54] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of ICNN'95 - International Conference on Neural Networks, pp. 1942-1948, 1995, https://doi.org/10.1109/ICNN.1995.488968.

[55] S. K. Gharghan, R. Nordin, M. Ismail and J. A. Ali, “Accurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cycling,” IEEE Sensors Journal, vol. 16, no. 2, pp. 529-541, 2016, https://doi.org/10.1109/JSEN.2015.2483745.

Downloads

Published

2024-12-26

How to Cite

[1]
S. Tahcfulloh, D. Maulianawati, and D. Wiharyanto, “Optimizing 2.4GHz Wireless Networks in Shrimp Ponds with Particle Swarm Optimization”, J. Ilm. Tek. Elektro Komput. Dan Inform, vol. 10, no. 4, pp. 817–832, Dec. 2024.

Issue

Section

Articles

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.