Throughput and Coverage Evaluation on The Use of Existing Cellular Towers for 5G Network in Surakarta City
DOI:
https://doi.org/10.26555/jiteki.v10i1.27719Keywords:
5G Network, Propagation Models, Coverage, Data RateAbstract
Currently, telecommunication operators must deploy 5G networks to cope with the exponential growth in internet-access demand. To minimize capital expenditure, existing 4G cell towers are being used to install new 5G base stations (gNodeB). However, 5G has different key performance indicators (KPI), frequency and bandwidth values, and propagation models compared to 4G hence an evaluation of this approach’s effectiveness is needed. This paper analyzes 5G network performance with frequency of 3.5 GHz, bandwidth of 100 MHz, and using existing cellular towers in Surakarta City. The city has a total area of 46.8 km2, mostly flat topography and not many tall buildings therefore propagation models with line-of-sight urban macro (UMa) and urban micro (UMi) are representative. KPI parameters for throughput include 75% of the area served with at least 100 Mbps for downlink and at least 50 Mbps for uplink. KPI parameter for signal strength targets at least 90% of the area covered with -100 dBm or higher. Our Atoll simulations show that the optimistic scenario (UMa) produces average throughput of 153.59 Mbps (downlink) and 117.88 Mbps (uplink), 89.43% served with at least 100 Mbps (downlink) and 100% experience at least 50 Mbps (uplink), average signal strength is -83.99 dBm and 79.71% area covered with at least -100 dBm. The pessimistic scenario (UMi) predicts throughput of 141.32 Mbps (downlink) and 117.88 Mbps (uplink), 86.52% provided with at 100 Mbps (downlink) and 100% served with 50 Mbps (uplink), average signal strength of -90.73 dBm and 75.13% area covered with at least -100 dBm. It can be concluded that the 5G network installed at existing 4G towers can conform to KPI parameters on throughput but still experience drawbacks in signal coverage. A non-Standalone 5G network is suitable for early deployment, but gNodeB installation at new locations is needed in the following years.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Muhammad Afif Affandi, Muhammad Afif Affandi, Muhammad Afif Affandi, Muhammad Afif Affandi, Muhammad Afif Affandi, Muhammad Afif Affandi, Muhammad Afif Affandi, Munawar Agus Riyadi, Munawar Agus Riyadi, Munawar Agus Riyadi, Munawar Agus Riyadi, Munawar Agus Riyadi, Munawar Agus Riyadi, Munawar Agus Riyadi, Teguh Prakoso
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License