Forecasting Solar Irradiation on Solar Tubes Using the LSTM Method and Exponential Smoothing
DOI:
https://doi.org/10.26555/jiteki.v9i3.26395Keywords:
Solar Irradiation, Solar Tube, LSTM, Exponential SmoothingAbstract
Sunlight is an alternative energy source that can be used as a substitute for fossil fuels. Renewable energy potential has not been widely utilized, especially in Indonesia. Utilization of sunlight, one of which is done indoors to save electricity and the source is not limited. This study aims to predict solar irradiance to determine the value of sunlight intensity in an area as the main source of the utilization of renewable electrical energy through the solar tube system with the LSTM method. This low-cost system offers a renewable way and considers the potential for solar radiation as an energy-efficient alternative based on the intensity of light captured by the solar tube. This research uses two methods. The LSTM method is a recurrent neural network forecasting technique that can study deeply and extract temporal relationships in data because of its large architecture. The exponential smoothing method is part of the time series forecasting technique and is used when the dataset has no cyclic variance and trend. Data collection was carried out in sunny conditions because it represents a stable condition in sunlight. The results obtained from the two methods are evaluated with RMSE and MAE values to choose the optimal approach. Due to lower RMSE and MAE values in this comparison, LSTM performs better than Multiple Repeat and Exponential Smoothing in terms of performance.Downloads
Published
2023-07-20
How to Cite
[1]
W. T. Handoko, M. Muladi, and A. N. Handayani, “Forecasting Solar Irradiation on Solar Tubes Using the LSTM Method and Exponential Smoothing”, J. Ilm. Tek. Elektro Komput. Dan Inform, vol. 9, no. 3, pp. 649–660, Jul. 2023.
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License