K-Means Segmentation Based-on Lab Color Space for Embryo Detection in Incubated Egg
DOI:
https://doi.org/10.26555/jiteki.v8i2.23724Keywords:
Color Image Analysis, Embryo Egg Detection, Image Segmentation, Lab Color Space, K-means CLusteringAbstract
The quality of the hatching process influences the success of the hatch rate besides the inherent egg factors. Eliminating infertile or dead eggs and monitoring embryonic growth are very important factors in efficient hatchery practices. This process aims to sort eggs that only have embryos to remain in the incubator until the end of the hatching process. This process aims to sort eggs with embryos to remain hatched until the end. Maximum checking is done the first week in the hatching period. This study aims to detect the presence of embryos in eggs. Detection of the existence of embryos is processed using segmentation. Egg images are segmented using the K-means algorithm based on Lab color images. The results of the image acquisition are converted into Lab color space images. The results of Lab color space images are processed using K-means for each color. The K-means process uses cluster k=3, where this cluster divides the image into three parts: background, eggs, and yolk. Egg yolks are part of eggs that have embryonic characteristics. This study applies the concept of color in the initial segmentation and grayscale in the final stages. The initial phase results show that the image segmentation results using k-means clustering based on Lab color space provide a grouping of three parts. At the grayscale image processing stage, the results of color image segmentation are processed with grayscaling, image enhancement, and morphology. Thus, it seems clear that the yolk segmented shows the presence of egg embryos. Based on this process and results, the initial stages of the embryo detection process used K-means segmentation based on Lab color space. The evaluation uses MSE and MSSIM, with values of 0.0486 and 0.9979; this can be used as a reference that the results obtained can detect embryos in egg yolk. This protocol could be used in a non-destructive quantitative study on embryos and their morphology in a precision poultry production system in the future.Downloads
Published
2022-07-09
How to Cite
Saifullah, S., Drezewski, R., Khaliduzzaman, A., Tolentino, L. K., & Ilyos, R. (2022). K-Means Segmentation Based-on Lab Color Space for Embryo Detection in Incubated Egg. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 8(2), 175–185. https://doi.org/10.26555/jiteki.v8i2.23724
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License