Penerapan analogi pada perkuliahan genetika untuk menumbuhkan keterampilan penalaran ilmiah (scientific reasoning)

Authors

  • Yuyun Maryuningsih IAIN Syekh Nurjati Cirebon
  • Topik Hidayat Universitas Pendidikan Indonesia
  • Riandi Riandi Universitas Pendidikan Indonesia
  • Nuryani Y Rustaman Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.26555/bioedukatika.v6i2.9429

Keywords:

Analogi, Keterampilan penalaran ilmiah, Genetika

Abstract

Keterampilan penalaran ilmiah yang merupakan keterampilan berpikir tingkat tinggi yang perlu dilatihkan pada mahasiswa calon guru untuk materi-materi genetika yang bersifat abstrak seperti topik materi genetik dan pindah silang. Penelitian ini merupakan studi pendahuluan dalam perancangan program perkuliahan genetika, untuk mengetahui penggunaan strategi dan metode yang tepat dalam beberapa materi genetika. Implementasi pembelajaran genetika dengan analogi diujikan secara terbatas pada tiga puluh tujuh mahasiswa Pendidikan Biologi yang mengambil mata kuliah genetika. Analogi dilakukan pada topik materi genetik dan pindah silang. Penerapan analogi pada model DNA dengan menggunakan bahan-bahan yang dapat digunakan dalam pembuatan model DNA dan analogi pada pindah silang dengan menggunakan lilin malam/plasticine. Profil keterampilan penalaran ilmiah siswa diukur secara skoring pada model DNA untuk topik materi genetik dan pindah silang. Data dianalisis secara kualitatif untuk melihat profil siswa dalam penalaran ilmiah. Hasil dari penelitian ini bahwa penggunaan analogi dalam pembelajaran genetika dapat diterapkan pada topik materi genetik dan pindah silang.

Analogies application of genetic course to arise scientific reasoning skills. Scientific reasoning skills were high-level thinking skills that need to be trained in prospective teacher students for abstract genetic material such as the topic of genetic material and crossovers. This research was a preliminary study in the design of the genetic lecture program, to find out the use of appropriate strategies and methods in some genetic material. The implementation of genetic learning by analogy was limitedly tested on thirty-seven Biology Education students who took genetics courses. The analogy was done on the topic of genetic material and crossovers. The application of analogies to DNA models using materials that can be used in making DNA models and analogies to crossovers using night candles/plasticine. Profiles of students' scientific reasoning skills are measured scoring on DNA models for the topic of genetic material and crossovers. Data were analyzed qualitatively to see students' profiles in scientific reasoning. The results of this study that the use of analogies in genetic learning could be applied to the topic of genetic material and crossovers.

Author Biographies

Yuyun Maryuningsih, IAIN Syekh Nurjati Cirebon

Jurusan Tadris Biologi, IAIN Syekh Nurjati Cirebon, Jl. Perjuangan, Kota Cirebon, Jawa Barat 45131, Indonesia

Topik Hidayat, Universitas Pendidikan Indonesia

SPS Universitas Pendidikan Indonesia

Riandi Riandi, Universitas Pendidikan Indonesia

SPS Universitas Pendidikan Indonesia

Nuryani Y Rustaman, Universitas Pendidikan Indonesia

SPS Universitas Pendidikan Indonesia

References

Bello, J., Butler, C., Radavich, R., York, A., Oseto, C., Orvis, K., & Pittendrigh, B. R. (2007). Genomics analogy model for educators (GAME): VELCRO Analogy model to enable the learning of DNA arrays for visually impaired and blind students. The Science Education Review, 6(4), 123:1-123:12. Diambil dari https://files.eric.ed.gov/fulltext/EJ1050923.pdf

Cavallo, A. M. L. (1996). Meaningful learning, reasoning ability, and students understanding and problem solving of topics in genetics. Journal of Research in Science Teaching, 33(6), 625-656. https://doi.org/10.1002/(SICI)1098-2736(199608)33:6<625::AID-TEA3>3.0.CO;2-Q

Ding, L., Wei, X., & Mollohan, K. (2016). Does higher education improve student scientific reasoning skills? International Journal of Science and Mathematics Education, 14(4), 619-634. https://doi.org/10.1007/s10763-014-9597-y

Dowden, B. H. (1993). Logical reasoning. California: Wadsworth Pub. Co.

Duncan, R. G. (2007). The role of domain-specific knowledge in generative reasoning about complicated multileveled phenomena. Cognition and Instruction, 25(4), 271-336. https://doi.org/10.1080/07370000701632355

Engelmann, K., Neuhaus, B. J., & Fischer, F. (2016). Fostering scientific reasoning in education meta-analytic evidence from intervention studies. Educational Research and Evaluation, 22(5-6), 333-349. https://doi.org/10.1080/13803611.2016.1240089

Goldschmidt, G. (2001). A strategy for design reasoning and learning. In C. M. Eastman, W. M. McCracken, & W. C. Newstetter (Ed.), Design knowing and learning: Cognition in design education (hal. 199). USA: Elsevier.

Janssen, F. J. J. M., & van Berkel, B. (2015). Making philosophy of science education practical for science teachers. Science & Education, 24(3), 229-258. https://doi.org/10.1007/s11191-014-9735-5

Jimnez-Aleixandre, M. P. (2014). Determinism and underdetermination in genetics: Implications for students engagement in argumentation and epistemic practices. Science & Education, 23(2), 465-484. https://doi.org/10.1007/s11191-012-9561-6

Kaufman, D. R., Patel, V. L., & Magder, S. A. (1996). The explanatory role of spontaneously generated analogies in reasoning about physiological concepts. International Journal of Science Education, 18(3), 369-386. https://doi.org/10.1080/0950069960180309

Kind, P., & Osborne, J. (2017). Styles of scientific reasoning: A cultural rationale for science education? Science Education, 101(1), 8-31. https://doi.org/10.1002/sce.21251

Kalas, D., & SaÄŸlam, N. (2014). Students understanding of genetics concepts: the effect of reasoning ability and learning approaches. Journal of Biological Education, 48(2), 63-70. https://doi.org/10.1080/00219266.2013.837402

Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., Ryan, M. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design(tm) into practice. Journal of the Learning Sciences, 12(4), 495-547. https://doi.org/10.1207/S15327809JLS1204_2

Lawson, A. E. (2004). The nature and development of scientific reasoning: A synthetic view. International Journal of Science and Mathematics Education, 2(3), 307-338. https://doi.org/10.1007/s10763-004-3224-2

Shamos, M. H. (Morris H. (1995). The myth of scientific literacy. Rutgers University Press.

Stiller, J., Hartmann, S., Mathesius, S., Straube, P., Tiemann, R., Nordmeier, V., Upmeier zu Belzen, A. (2016). Assessing scientific reasoning: A comprehensive evaluation of item features that affect item difficulty. Assessment & Evaluation in Higher Education, 41(5), 721-732. https://doi.org/10.1080/02602938.2016.1164830

Wenning, C. J. (2007). Assessing inquiry skills as a component of scientific literacy. Journal of Physics Teacher Education Online, 4(2), 21-24. Diambil dari http://www.phy.ilstu.edu/jpteo/issues/jpteo4(2)win07.pdf

Wenning, C. J., & Vieyra, R. E. (2015). Teaching high school physics (volume 1). Author.

Woody, S., & Himelblau, E. (2013). Understanding & teaching genetics using analogies. The American Biology Teacher, 75(9), 664-669. https://doi.org/10.1525/abt.2013.75.9.7

Zeineddin, A., & Abd-El-Khalick, F. (2010). Scientific reasoning and epistemological commitments: Coordination of theory and evidence among college science students. Journal of Research in Science Teaching, 47(9), 1064-1093. https://doi.org/10.1002/tea.20368

Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review, 20(1), 99-149. https://doi.org/10.1006/DREV.1999.0497

Downloads

Published

2018-12-30

Issue

Section

Articles