The Combination of C4.5 with Particle Swarm Optimization in Classification of Class for Mental Retardation Students
DOI:
https://doi.org/10.26555/jiteki.v9i1.25520Keywords:
Mental Retardation, Classification, C4.5, Particle Swarm Optimization, Feature SelectionAbstract
Mental retardation or brain weakness is a condition of children who experience mental disorders. There are several characteristics to know the child has mental retardation. When entering a school, teachers are expected to be able to determine the right class for mental retardation students according to their category. Data mining is the process of finding patterns in selected data using artificial intelligence and machine learning. Algorithm C4.5 is one of the classification techniques in data mining. C4.5 can be used to create decision trees and classify data that has numeric, continuous, and categorical attributes. But C4.5 has the disadvantage of reading large amounts of data and cannot rank every alternative. PSO is an optimization algorithm for feature selection that can improve performance in data classification. Therefore, this study proposes an algorithm that can overcome the weaknesses of C4.5 by combining PSO. This study aims to classify a class of new mental retardation students using a combination of C4.5 as a classification and PSO as a feature selection to determine the attributes that affect the level of accuracy. The contribution of this research is to make it easier for the school to determine the new class of mental retardation students so that it is appropriate and according to their needs. The classification process in this study uses a combination of C4.5 and PSO. The validation used in this model is 10-fold cross-validation, and the evaluation uses a confusion matrix. This study resulted in an accuracy of C4.5 before using PSO of 91%. While the accuracy of C4.5 uses a PSO of 93%. Of the 20 attributes, there are 6 attributes that affect the level of accuracy. This study shows that PSO can be used to implement feature selection and increase the accuracy value of C4.5 by 2%.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License