Pemodelan Forward Kinematic dan Inverse Kinematic Robot Berlengan PUMA 560
DOI:
https://doi.org/10.26555/jiteki.v4i2.11795Keywords:
PUMA560, forward kinematic, inverse kinematicsAbstract
Robot berlengan memerlukan derajat pergerakan yang tepat untuk mendapatkan posisi yang tepat. Pada penelitian ini fokus pada permasalah kinematika robot berlengan yang memiliki 6 joint. Penelitian ini akan menunjukkan hubungan dari sudut setiap joint dan posisi dari end- effector. Robot berlengan dimodelkan sebagai robot PUMA 560 yang memiliki 6 joint. Representasi matematis dari robot PUMA 560 menggunakan parameter pada metode DH (Denavit-Hartenberg), dan forward kinematic sehingga inverse kinematic dari robot PUMA 560 dapat dianalisis dalam model matematis. Sebagai legitimasi dari model matematis tersebut akan dilakukan simulasi dengan menggunakan Robotic, Vision and Control (RVC)Â tools berdasarkan model Peter.I.Corke. Forward kinematic dari robot PUMA 560 model akan ditampilkan dalam 4 mode yang memiliki sudut yang berbeda pada masing-masing joint. Simulasi forward kinematic direpresentasikan dalam 3D untuk memperlihatkan perubahan pergerakan dan posisi dari robot berlengan dengan 6 joint. Hasil dari inverse kinematic robot PUMA 560 berdasarkan posisi dan koordinat robot memiliki nilai sudut yang berbeda dari nilai sudut saat forward kinematic di setiap mode. Perbedaan tersebut terjadi karena perbedaan konfigurasi dari robot PUMA 560, sehingga nilai inverse kinematic robot PUMA 560 adalah tidak unik.References
A. Benitez, I. Huitzil, M. M. A. Jorge, D. La Calleja, T. Carril, and J. C. Bonilla, “A 3D Simulation Environment for Kinematic TAsk of the PUMA 560 Robot.â€, Conf. 21st Int. Conf. on Electr. Com. and Comp., April, 2011
C. Han, H. Ma, W. Zuo, S. Chen, and X. Zhang, “A general 6-DOF industrial robot arm control system based on Linux and FPGA,†Proc. 30th Chinese Control Decis. Conf. CCDC 2018, pp. 1220–1225, 2018.
H. A. Hendarto, Munadi, and J. D. Setiawan, “ANFIS application for calculating inverse kinematics of programmable universal machine for assembly (PUMA) robot,†2014 1st Int. Conf. Inf. Technol. Comput. Electr. Eng. Green Technol. Its Appl. a Better Futur. ICITACEE 2014 - Proc., pp. 35–40, 2015.
A. Patil, M. Kulkarni, and A. Aswale, “Analysis of the inverse kinematics for 5 DOF robot arm using D-H parameters,†2017 IEEE Int. Conf. Real-Time Comput. Robot. RCAR 2017, vol. 2017–July, pp. 688–693, 2018.
A. N. Barakat, K. A. Gouda, and K. A. Bozed, “Kinematics analysis and simulation of a robotic arm using MATLAB,†4th Int. Conf. Control Eng. Inf. Technol. CEIT 2016, no. December, pp. 16–18, 2017.
K. Lee, J. Lee, B. Woo, and J. Lee, “Modeling and Control of a Articulated Robot Arm with Embedded Joint Actuators,†2018 Int. Conf. Inf. Commun. Technol. Robot., pp. 1–4.
B. Siciliano, O. Khatib, and F. Groen, “Robotics, Vision and Control,†Springer Tracts in Advanced Robotics, vol. 73. Springer, Berlin, p. 570, 2011.
P. Corke, Robotics Vision and Control, Fundamental Algorithms in MATLAB ®, vol. 73. Springer Tracts in Advance Robotics, 2011.
P. Marothiya and S. Saha, “Robot inverse kinematics and dynamics algorithms for windows,†Recent Trends Manuf., pp. 229–237, 2003.
K. Bouzgou and Z. Ahmed-Foitih, “Geometric modeling and singularity of 6 DOF Fanuc 200IC robot,†4th Int. Conf. Innov. Comput. Technol. INTECH 2014 3rd Int. Conf. Futur. Gener. Commun. Technol. FGCT 2014, pp. 208–214, 2014.
M. Gao, Z. Li, X. Meng, Z. He, J. Huang, and K. Yin, “Adaptive velocity planning for 6-DOF Robots with fixed tracks,†IEEE Int. Symp. Ind. Electron., vol. 2016–November, pp. 350–354, 2016.
M. M. Ali, H. Liu, R. Stoll, and K. Thurow, “Arm grasping for mobile robot transportation using Kinect sensor and kinematic analysis,†Conf. Rec. - IEEE Instrum. Meas. Technol. Conf., vol. 2015–July, pp. 516–521, 2015.
Y. Feng, Z. Huang, and Y. Zhang, “Motion Planning of a 6-Dofs Robot Arm for Bandaging Nursing Task", Asia-Pacific Sig. and Inf. Proc. Assoc. Annual Summit and Conf., December, pp. 409–413, 2017.
S. Han, H. Wang, and Y. Tian, “Integral backstepping based computed torque control for a 6 DOF arm robot,†Proc. 29th Chinese Control Decis. Conf. CCDC 2017, pp. 4055–4060, 2017.
P. Srisuk, A. Sento, and Y. Kitjaidure, “Forward kinematic-like neural network for solving the 3D reaching inverse kinematics problems,†ECTI-CON 2017 - 2017 14th Int. Conf. Electr. Eng. Comput. Telecommun. Inf. Technol., pp. 214–217, 2017.
Spong, “Robot dynamics and control,†Automatica, vol. 28, no. 3, pp. 655–656, 1992.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License