Rancang Bangun Aplikasi Text Mining dalam Mengelompokkan Judul Penelitian Dosen Menggunakan Metode Shared Nearest Neighbor dan Euclidean Similarity
DOI:
https://doi.org/10.26555/jiteki.v3i2.7697Abstract
Data mining adalah proses untuk mengekstrak informasi tersembunyi menjadi sebuah pengetahuan. Beberapa jenis data dalam data mining adalah web mining, text mining, sequence mining, graph mining, temporal data mining, mining spatial data, Mining data terdistribusi dan multimedia mining. Pengelompokan dokumen merupakan salah satu teknik dari text mining. Tujuan penelitian ini adalah untuk membangun aplikasi pengelompokkan judul penelitian dosen menggunakan metode shared nearest neighbor. Metode yang digunakan dalam penelitian merupakan salah satu metode pengelompokkan dalam text mining yaitu shared nearest neighbor (SNN) dengan euclidean similarity. Pengujian dilakukan menggunakan black box test. Hasil dari penelitian ini adalah aplikasi text mining yang mampu mengelompokkan judul penelitian dosenReferences
R. Janani and S. Vijayarani, “Text Mining Research : A Survey,†Int. J. Innov. Res. Comput. Commun. Eng., vol. 4, no. 4, pp. 6564–6571, 2016.
B. Santosa, Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu, 2007.
R. F. Zainal and A. Djunaidy, “ALGORITMA SHARED NEAREST NEIGHBOR BERBASIS DATA SHRINKING,†JUTI, vol. 7, pp. 1–8, 2008.
L. Zahrotun, “Comparison Jaccard similarity , Cosine Similarity and Combined Both of the Data Clustering With Shared Nearest Neighbor Method,†vol. 5, no. 1, pp. 11–18, 2016.
Mushlihudin and L. Zahrotun, “Perancangan Text mining Pengelompokkan Penelitian Dosen Menggunakan Metode Shared Nearest Neihbor dengan Euclidean Similarity,†in Seminar Nasional Teknologi dan Informatika (SNATIF), 2016, pp. 849–855.
S. Jiang, G. Pang, W. Meiling, and K. Limin, “An Improved K-Nearest-Neighbor Algoritm for Text Categorization,†Expert Syst. with Appl., vol. 39.1, pp. 1503–1509, 2012.
C. Li and L. Nan, “A Novel Text Clustering Algorithm,†Energy Procedia, vol. 13, pp. 3583–3588, 2011.
R. Handoyo, S. M. Nasution, P. Studi, S. Komputer, S. Linkage, and S. Coefficient, “Perbandingan Metode Clustering Mengggunakan metode Single Linkage dan K-Means Pada Pengelompokkan Dokumen,†JSM STMIK Mikroskil, vol. 15, no. 2, pp. 73–82, 2014.
T. Alfina and B. Santosa, “Analisa Perbandingan Metode Hierarchical Clustering, K-Means dan Gabugan Keduanya dalam Membentuk Cluster Data (Studi Kasus : Problem Kerja Praktek Jurusan Teknik Industri ITS),†J. Tek. POMITS, vol. 1, no. 1, pp. 1–5, 2012.
A. K. Patidar, J. Agrawal, and N. Mishra, “Analysis of Different Similarity Measure Functions and their Impacts on Shared Nearest Neighbor Clustering Approach,†Int. J. Comput. Appl., vol. 40, no. 16, pp. 1–5, 2012.
Downloads
Published
Issue
Section
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License