Performance and Emissions of Nanoadditives in Diesel Engine: A review
DOI:
https://doi.org/10.26555/jiteki.v9i4.27271Keywords:
Diesel engine, Nanoparticle, Biofuel, Combustion, Performance, EmissionAbstract
Nowadays, the demand for energy and fossil fuels has widely increased as a result of the continuous growth of the population. However, the continued use of traditional fuels as the primary source of energy has resulted in various environmental challenges related to climate change and global warming. This has prompted researchers to look for more eco-friendly and sustainable fuel alternatives with a minimal amount of engine modification and emission treatment techniques. Amongst the suggested alternative fuels, biofuels, biofuel/diesel blends, and the incorporation of nanoparticles into fuels. The nanoparticle diesel additives played a vital role in increasing engine performance as well as retarding harmful emissions such as nitrogen oxides (NOx), carbon monoxide (CO), unburned hydrocarbon (UHC), and particulate matter (PM). Metal-oxides nanoadditive such as aluminum oxide (Al2O3), ceric oxide (CeO2), and titanium dioxide (TiO2) act as oxygen catalysts and promote proper mixing of fuel and air, resulting in more efficient combustion and decreased emissions. The incorporation of nanometal-based additives, including iron (Fe), copper (Cu), and aluminum (Al) accelerated the fuel evaporation rate and increased the probability of fuel ignition. Carbon-based nanoparticles such as carbon nanotubes (CNTs), graphene nanoplatelets (GNPs), and graphene oxide (GO) are promising fuel nanoadditives owing to their metal-free composition. In addition, carbon-based additives enhanced the thermal conductivity of fuel and increased active sites available for chemical reactions, which led to improved engine performance.Downloads
Published
2023-10-18
How to Cite
[1]
N. M. Ghazaly and A. N. Abdulhameed, “Performance and Emissions of Nanoadditives in Diesel Engine: A review”, J. Ilm. Tek. Elektro Komput. Dan Inform, vol. 9, no. 4, pp. 997–1008, Oct. 2023.
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License