Intellectual System Diagnostics Glaucoma
DOI:
https://doi.org/10.26555/jiteki.v9i4.26969Keywords:
Eyes, Glaucoma, Optic nerve, Ophthalmology, Optical coherence tomographyAbstract
Glaucoma is a chronic eye disease that can lead to permanent vision loss. However, glaucoma is a difficult disease to diagnose because there is no pattern in the distribution of nerve fibers in the ocular fundus. Spectral analysis of the ocular fundus images was performed using the Eidos intelligent system. From the ACRIMA eye image database, 90.7% of healthy eye images were recognized with an average similarity score of 0.588 and 74.42% of glaucoma eye images with an average similarity score of 0.558. The reliability of eye image recognition can be achieved by increasing the number of digitized parameters of eye images obtained, for example, by optical coherence tomography. The research contribution is the digital processing of fundus graphic images by the intelligent system “Eidos”. The scientific contribution lies in the automation of the glaucoma diagnosis process using digitized data. The results of the study can be used at medical faculties of universities to carry out automated diagnostics of glaucoma.Downloads
Published
2023-11-10
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License