Intellectual System Diagnostics Glaucoma
Abstract
Glaucoma is a chronic eye disease that can lead to permanent vision loss. However, glaucoma is a difficult disease to diagnose because there is no pattern in the distribution of nerve fibers in the ocular fundus. Spectral analysis of the ocular fundus images was performed using the Eidos intelligent system. From the ACRIMA eye image database, 90.7% of healthy eye images were recognized with an average similarity score of 0.588 and 74.42% of glaucoma eye images with an average similarity score of 0.558. The reliability of eye image recognition can be achieved by increasing the number of digitized parameters of eye images obtained, for example, by optical coherence tomography. The research contribution is the digital processing of fundus graphic images by the intelligent system “Eidos”. The scientific contribution lies in the automation of the glaucoma diagnosis process using digitized data. The results of the study can be used at medical faculties of universities to carry out automated diagnostics of glaucoma.
Keywords
Eyes; Glaucoma; Optic nerve; Ophthalmology; Optical coherence tomography
Full Text:
PDFDOI: http://dx.doi.org/10.26555/jiteki.v9i4.26969
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Tetyana Yuriyivna Utkina, Vladimir Ryabtsev, Vladimir Ryabtsev, Vladimir Ryabtsev, Vladimir Ryabtsev, Vladimir Ryabtsev, Parul Ichhpujani, Parul Ichhpujani, Parul Ichhpujani, Parul Ichhpujani, Parul Ichhpujani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
About the Journal | Journal Policies | Author | Information |
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika
ISSN 2338-3070 (print) | 2338-3062 (online)
Organized by Electrical Engineering Department - Universitas Ahmad Dahlan
Published by Universitas Ahmad Dahlan
Website: http://journal.uad.ac.id/index.php/jiteki
Email 1: jiteki@ee.uad.ac.id
Organized by Electrical Engineering Department - Universitas Ahmad Dahlan
Published by Universitas Ahmad Dahlan
Website: http://journal.uad.ac.id/index.php/jiteki
Email 1: jiteki@ee.uad.ac.id
Email 2: alfianmaarif@ee.uad.ac.id
Office Address: Kantor Program Studi Teknik Elektro, Lantai 6 Sayap Barat, Kampus 4 UAD, Jl. Ringroad Selatan, Tamanan, Kec. Banguntapan, Bantul, Daerah Istimewa Yogyakarta 55191, Indonesia