Optimization of Machine Learning Models with Segmentation to Determine the Pose of Cattle
DOI:
https://doi.org/10.26555/jiteki.v9i3.26750Keywords:
Augmentations, Cattle, Machine Learning, Random Forest, Segmentation, Support Vector MachineAbstract
Image pattern recognition poses numerous challenges, particularly in feature recognition, making it a complex problem for machine learning algorithms. This study focuses on the problem of cow pose detection, involving the classification of cow images into categories like front, right, left, and others. With the increasing popularity of image-based applications, such as object recognition in smartphone technologies, there is a growing need for accurate and efficient classification algorithms based on shape and color. In this paper, we propose a machine learning approach utilizing Support Vector Machine (SVM) and Random Forest (RF) algorithms for cow pose detection. To achieve an optimal model, we employ data augmentation techniques, including Gaussian blur, brightness adjustments, and segmentation. The proposed segmentation methods used are Canny and Kmeans. We compare several machine learning algorithms to identify the optimal approach in terms of accuracy. The success of our method is measured by accuracy and Receiver Operating Characteristic (ROC) analysis. The results indicate that using the Canny segmentation, SVM achieved 74.31% accuracy with a testing ratio of 90:10, while RF achieved 99.60% accuracy with the same testing ratio. Furthermore, testing with SVM and K-means segmentation reached an accuracy of 98.61% with a test ratio of 80:20. The study demonstrates the effectiveness of SVM and Random Forest algorithms in cow pose detection, with Kmeans segmentation yielding highly accurate results. These findings hold promising implications for real-world applications in image-based recognition systems. Based on the results of the model obtained, it is very important in pattern recognition to use segmentation based on color even though shape recognition.Downloads
Published
2023-09-07
How to Cite
[1]
A. M. Siregar, “Optimization of Machine Learning Models with Segmentation to Determine the Pose of Cattle”, J. Ilm. Tek. Elektro Komput. Dan Inform, vol. 9, no. 3, pp. 821–831, Sep. 2023.
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License