Deep Learning Model Implementation Using Convolutional Neural Network Algorithm for Default P2P Lending Prediction
DOI:
https://doi.org/10.26555/jiteki.v9i3.26366Keywords:
P2P Lending, CNN, Deep Learning, Default Risk, PredictionAbstract
Peer-to-peer (P2P) lending is one of the innovations in the field of fintech that offers microloan services through online channels without intermediaries. P2P lending facilitates the lending and borrowing process between borrowers and lenders, but on the other hand, there is a threat that can harm lenders, namely default. Defaults on P2P lending platforms result in significant losses for lenders and pose a threat to the overall efficiency of the peer-to-peer lending system. So it is essential to have an understanding of such risk management methods. However, designing feature extractors with very complicated information about borrowers and loan products takes a lot of work. In this study, we present a deep convolutional neural network (CNN) architecture for predicting default in P2P lending, with the goal of extracting features automatically and improving performance. CNN is a deep learning technique for classifying complex information that automatically extracts discriminative features from input data using convolutional operations. The dataset used is the Lending Club dataset from P2P lending platforms in America containing 9,578 data. The results of the model performance evaluation got an accuracy of 85.43%. This study shows reasonably decent results in predicting p2p lending based on CNN. This research is expected to contribute to the development of new methods of deep learning that are more complex and effective in predicting risks on P2P lending platforms.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License