Strawberry Plant Diseases Classification Using CNN Based on MobileNetV3-Large and EfficientNet-B0 Architecture
DOI:
https://doi.org/10.26555/jiteki.v9i3.26341Keywords:
Strawberry diseases, Convolutional Neural Network, Deep Learning, MobileNetV3-Large, EfficientNet-B0, Image classificationAbstract
Strawberry is a plant that has many benefits and a high risk of being attacked by pests and diseases. Diseases in strawberry plants can cause a decrease in the quality of fruit production and can even cause crop failure. Therefore, a method is needed to assist farmers in identifying the types of diseases in strawberry plants. Currently, there are many methods to assist farmers in identifying types of disease in plants, including strawberry plants. In this study, a system is proposed to be able to detect strawberry plant diseases by classifying the disease based on healthy and diseased strawberry leaf images. The proposed system is the Convolutional Neural Network (CNN) algorithm using MobileNetV3-Large and EfficientNet-B0 models to train pre-processed datasets. The results of this study obtained the best accuracy reaching 92.14% using the MobileNetV3-Large architecture with the hyperparameter optimizer RMSProp, epochs 70, and learning rate 0.0001. The percentage of the evaluation model using MobileNetV3-Large for precision, recall, and F1-Score achieved 92.81%, 92.14%, and 92.25%. Whereas in the EfficientNet-B0 architecture, the best accuracy results only reach 90.71% with the hyperparameter optimizer Adam, 70 epochs, and a learning rate of 0.003. Then, the precision, recall, and F1-scores for EfficientNet-B0 reached 92.65%, 90.00%, and 90.37%. Overall, it presents fairly good results in classifying strawberry leaf plant disease. Furthermore, in future work, it needs to obtain higher accuracy by generating more datasets, trying other augmentation techniques, and proposing a better model.Downloads
Published
2023-07-10
How to Cite
[1]
D. A. Pramudhita, F. Azzahra, I. K. Arfat, R. Magdalena, and S. Saidah, “Strawberry Plant Diseases Classification Using CNN Based on MobileNetV3-Large and EfficientNet-B0 Architecture”, J. Ilm. Tek. Elektro Komput. Dan Inform, vol. 9, no. 3, pp. 522–534, Jul. 2023.
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License