Design of a Laboratory Scale Archemedes Screw Turbine Model Hydroelectric Power Station (PLTA) Simulator
DOI:
https://doi.org/10.26555/jiteki.v9i3.26309Keywords:
Renewable energy, Archimedes Screw Turbine, Efficiency evaluation, Cheap installationAbstract
The purpose of this research is to design a new model simulator of the Archimedes Screw turbine on a laboratory scale which is simple, inexpensive, environmentally friendly and for practice at the Electrical Engineering Laboratory of Nurul Jadid University by studying the efficiency of the Archimedes turbine which utilizes kinetic energy. water flow energy from the difference in upstream-downstream water head. Methods used numerical simulations have been run to evaluate the performance coefficient of the turbine alone (without friction loss or blockage augmentation), and to extend the TSR range. Numerical simulations make it possible to generate efficiency curves of Archimedes Screw turbines in both parallel and inclined configurations. The result obtained is that the proposed geometry can be used in real-life applications, providing 0.5 kW at flow velocities between 1 and 2 m/s. Novelty of hydropower simulation studies of the Archimedes turbine screw model using numerical simulation methods.Downloads
Published
2023-07-10
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License