Classification of Corn Seed Quality Using Convolutional Neural Network with Region Proposal and Data Augmentation
DOI:
https://doi.org/10.26555/jiteki.v9i2.26222Keywords:
Corn seed, Deep learning, Convolutional neural network, Region proposal, Convex Hull, Data augmentationAbstract
Corn is one of the essential commodities in agriculture. All components of corn can be utilized and accommodated for the benefit of humans. One of the supporting components is the quality of corn seeds, where a specific source has the physiological qualities to survive. The problem is how to get information on the quality of corn seeds at agricultural locations and get information through the physical image alone. This research tries to find a solution to obtain high accuracy in classifying corn kernels using a convolutional neural network because there is a profound training process. The problem with convolutional neural networks is the training process takes a long time, depending on the number of layers in the architecture. This research contributes to increasing the computing time with the proposed contribution by adding Region proposals with a convex hull to use on a custom layer. The method's purpose is a region proposal area with a convex hull to increase the focus on the convolution multiplication process. It affected reducing unnecessary objects in background images. A custom layer architecture by maintaining the priority layer is an option to get a shorter computational time in constructing a model. In addition, the architecture that is made still considers the stability of the training process. The results on the classification of corn seeds are obtained by a model with an average accuracy of 99.01%—the Computational training time to get the model is 2 minutes 30 seconds. The average error value for MSE is 0.0125, RMSE is 0.118, and MAE is 0.0108. The experimental data testing process has an accuracy ranging from 77% -99%. In conclusion, using region proposals can increase accuracy by around 0.3% because focused objects assist the convolution processDownloads
Published
2023-05-20
How to Cite
[1]
B. D. Satoto, R. T. Wahyuningrum, and B. K. Khotimah, “Classification of Corn Seed Quality Using Convolutional Neural Network with Region Proposal and Data Augmentation”, J. Ilm. Tek. Elektro Komput. Dan Inform, vol. 9, no. 2, pp. 348–362, May 2023.
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License