Optimized PID-Like Neural Network Controller for Single-Objective Systems
DOI:
https://doi.org/10.26555/jiteki.v8i4.25237Keywords:
Artificial neural network, Intelligent controller, PID, Integral absolute error, OptimizationAbstract
The utilization of intelligent controllers becomes more prevalent as the hype of Industry 4.0 arises. Artificial neural network (ANN) exhibits the mapping ability and can estimate the output by means of either interpolation or extrapolation. These properties are sought to supersede the classical controllers. In this study, the ANN establishment was initiated by collecting dataset from the input and output of a well-known PID controller. The dataset was trained using a set of control factor combinations, including the number of neurons, the number of hidden layers, activation functions, and learning rates. Two kinds of ANN controllers were investigated, including one-input and three-input ANN. The testing was conducted under normal and uncertain conditions. These uncertainties include external disturbances, plant variations, and setpoint variations. The integral absolute error (IAE) was selected as the single objective to assess. The simulation results show that the response of three-input ANN controllers could yield smaller IAE at their best combinations under most kinds of conditions. Besides, the three-input ANN outperforms the one-input ANN both qualitatively and quantitatively. These facts might lead to a broader utilization of ANN as controllers.Downloads
Published
2022-12-21
How to Cite
[1]
G. Dewantoro, J. N. Sukamto, and F. D. Setiaji, “Optimized PID-Like Neural Network Controller for Single-Objective Systems”, J. Ilm. Tek. Elektro Komput. Dan Inform, vol. 8, no. 4, pp. 537–551, Dec. 2022.
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License