Design of a 1x4 Optical Power Divider Based on Y-Branch Using III-Nitride Semiconductor
DOI:
https://doi.org/10.26555/jiteki.v8i1.23646Keywords:
Optical power divider, Y-branch, Mode coupling, III-Nitride, GaNAbstract
Optical communications are identified as a technology that is able to meet future demands. As a passive component of optical communication, optical power dividers play an essential role. We propose a novel 1x4 optical power divider design, which is a combination of an optical power divider design using a Y-branch and an optical power divider using rectangular waveguides utilizing mode coupling phenomena from our previous researched designs. The 1x4 optical power divider design using three Y-branches and utilizing mode coupling phenomena is described in this work. The design consists of three sections: an input Y-branch, rectangular waveguides, and two output Y-branches. By utilizing mode coupling phenomena with 3 rectangular waveguides, the optical power was transferred from one waveguide to its adjacent, so we obtained a wider splitting angle at the input Y-branch. The design was optimized using the beam propagation method (BPM) at a wavelength for optical communication of λ = 1.55 µm. We optimized various parameters such as the width and thickness of the waveguide, splitting angles, coupling gaps, and coupling lengths by doing numerous experiments. The result shows that the proposed design was successfully split into four outputs with 0.14 dB power imbalance at four output ports and 0.12 dB excess loss through the design. The excess loss and power imbalance at varied wavelengths were also observed. The distribution of excess loss and power imbalance is almost stable through the C-band range (1530-1565 nm). The proposed design shows the possibility of a new wide-angle optical power divider design and demonstrates the development possibilities of optical interconnections at wavelengths of 1530-1565 nm.Downloads
Published
2022-04-28
How to Cite
[1]
N. Franata and R. W. Purnamaningsih, “Design of a 1x4 Optical Power Divider Based on Y-Branch Using III-Nitride Semiconductor”, J. Ilm. Tek. Elektro Komput. Dan Inform, vol. 8, no. 1, pp. 119–127, Apr. 2022.
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License