Sentiment Analysis and Topic Modelling of The COVID-19 Vaccine in Indonesia on Twitter Social Media Using Word Embedding
DOI:
https://doi.org/10.26555/jiteki.v8i1.23009Keywords:
Sentiment Analysis, Topic Modeling, Word Embedding, Fasttext, GloVe, Latent Dirichlet AllocationAbstract
This study aims to analyze the sentiments of the Indonesian people towards the COVID-19 vaccine on Twitter. Data collection was carried out from September 2020 to June 2021 with the keyword "covid vaccine," which resulted in 262306 tweets. After filtering and cleaning, there are 83384 tweets left. The labeling process was done manually by an expert. The label composition in the data is 35209 tweets of positive sentiment, 41596 tweets of neutral sentiment, and 6579 tweets of negative sentiment. The remaining data is preprocessed using case folding, removing punctuation, stopword removal, stemming, and the application of slang words. The highest number of tweets appeared in January 2021, after Joko Widodo became the first person in Indonesia to receive a vaccine injection. The number of tweets reached 23492 tweets. At the topic modeling stage, measurements were conducted using the Coherence Score. The distribution of the optimal number of topics is 3 topics. The first topic, with a token percentage value of 51.8%, leads to positive sentiment, while the second and third topics, with token percentage values of 24.5% and 23.7%, lead to neutral sentiment. Bidirectional LSTM architecture was implemented to perform sentiment classification. Fasttext and GloVe word embedding was tested to vectorize tweet data. The test accuracy generated by Fasttext word embedding reached 75,7690%, while the test accuracy produced with GloVe word embedding reached 74.7017%. The usage of slang words could not increase the test accuracy in this study. The use of the Modelcheckpoint to monitor model performance during training could produce a model with a slightly higher test accuracy, about 1.07% (in scenario 1 and scenario 6), compared to a model whose performance was monitored using Early Stopping. In future research, it can be tried to apply a lower learning rate to produce better accuracy in a large number of epochs, or it could be by changing the dropout parameter.Downloads
Published
2022-04-21
How to Cite
[1]
K. K. Agustiningsih, E. Utami, and O. M. A. Alsyaibani, “Sentiment Analysis and Topic Modelling of The COVID-19 Vaccine in Indonesia on Twitter Social Media Using Word Embedding”, J. Ilm. Tek. Elektro Komput. Dan Inform, vol. 8, no. 1, pp. 64–75, Apr. 2022.
Issue
Section
Articles
License
Authors who publish with JITEKI agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution 4.0 International License