Exploring Mathematical Concepts in Batik Sidoluhur Solo

Authors

  • Naufal Ishartono Universitas Muhammadiyah Surakarta
  • Dewi Ayu Ningtyas

DOI:

https://doi.org/10.12928/ijeme.v5i2.20660

Keywords:

Batik Sidoluhur, Ethnography, Ethnomathematics

Abstract

Many ethnomathematical studies examine the existence of mathematics concepts in Indonesian cultural products where batik is one of them. However, there is a lacunae from previous studies that examine the existence of mathematical concepts in Batik Sidoluhur. Therefore, the current study aims to explore mathematical concepts in Batik Sidoluhur, such as geometry, algebra, arithmetic, and statistics. The study used ethnography as an approach by answering four principal questions, namely "where do I start looking?", "how do I find it?", "how do I recognize that it has found something significant?" and "how to understand what it is?". By answering the questions, researchers managed to examine the mathematical concept contained in Batik Sidoluhur. From the four mathematical concepts explored, namely geometry, algebra, statistics, and arithmetic, only the concept of geometry is contained in Batik Sidoluhur and has been confirmed by a geometry expert. Sub-concepts of geometry found are (1) sub-concepts of geometry transformations such as translation and reflection, (2) plane geometry such as rhombuses, rectangles, triangles, and circles, and (3) congruence. It is hoped that the results of this study can be used as materials to promote Batik Sidoluhur to the younger generation through contextual and meaningful mathematics learning. In this article also explained how to use the context of Batik Sidoluhur in mathematics learning.

References

Afifah, D. S. N., Putri, I. M., & Listiawan, T. (2020). Eksplorasi Etnomatematika pada Batik Gajah Mada Motif Sekar Jagad Tulungagung . BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(1), 101-112.

Arwanto. (2017). Eksplorasi Etnomatematika Batik Trusmi Cirebon untuk Mengungkapkan Nilai Filosofi dan Konsep Matematis . Phenomenon: Jurnal Pendidikan MIPA, 7(1), 40-49.

Berg, M. de, Cheong, O., Kreveld, M. van, & Overmars, M. (2008). Computational Geometry: Algorithms and Applications (3rd ed.). https://doi.org/10.1007/978-3-540-77974-2

DAmbrosio, U. (1985). Ethnomathematics and Its Place in the History and Pedagogy of Mathematics. For the Learning of Mathematics, 5(1), 44-48. Retrieved from http://www.jstor.org/stable/40247876.

DAmbrosio, U. (1999). Literacy, Matheracy, and Technocracy: A Trivium for Today. Mathematical Thinking and Learning, 1, 131-153.

Dhenabayu, R., Sari, H. P., & Yunita Sari, S. V. (2018). Sistem Pakar Penentuan Motif Dan Warna Batik Berdasarkan Ciri Fisik Dengan Metode Forward Chaining. Antivirus: Jurnal Ilmiah Teknik Informatika, 12(1), 1-15

Faiziyah, N., Khoirunnisa, M., Azizah, N. N., Nurrois, M., Prayitno, H. J., Desvian, & Warsito. (2021). Ethnomathematics: Mathematics in Batik Solo. Journal of Physics: Conference Series, 1720(1), 1-5.

Fathikhin, N., & Wijayanti, P. (2020). Exploration of Ngawi Batik Ethnomatematics to Unlock Philosophy Values and Mathematics Concepts. Journal Intellectual Sufism Research (JISR), 3(1), 26-37. https://doi.org/10.52032/jisr.v3i1.81

Fitri, N. L., & Prahmana, R. C. I. (2020). Designing learning trajectory of circle using the context of Ferris wheel. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(3), 247-261. https://doi.org/10.23917/jramathedu.v5i3.10961

Gaffney, D. (2021). What is Batik? Retrieved May 7, 2021, from: http://www.batikguild.org.uk/batik/what-is-batik

Irawan, A., Lestari, M., Rahayu, W., & Wulan, R. (2019). Ethnomathematics batik design Bali island. Journal of Physics: Conference Series, 1338(1), 1-5.

Johnson, R. A. (1929). Modern geometry: an elementary treatise on the geometry of the triangle and the circle. Retrieved from https://books.google.co.id/books/about/Modern_Geometry.html?id=KVdtAAAAMAAJ&redir_esc=y

Judith, H., & Markus, H. (2008). Introduction to GeoGebra. Retrieved from Geogebra website: www.geogebra.org.

Kalinggo, W. (2010). Mitos Dibalik Motif Batik Solo. Retrieved May 4, 2021, from https://bosbatik.wordpress.com/2010/07/09/mitos-dibalik-batik-solo/

Katsap, A. (2017). Opening the Door to Ethnomathematics in Israel. In Series on Mathematics Education: Vol. Volume 13. K-12 Mathematics Education in Israel (pp. 377-384).

Lisnani, Zulkardi, Putri, R. I. I., & Somakim. (2020). Etnomatematika: Pengenalan Bangun Datar Melalui Konteks Museum Negeri Sumatera Selatan Balaputera Dewa. Mosharafa: Jurnal Pendidikan Matematika, 9(September), 359-370.

Mahuda, I. (2020). Eksplorasi Etnomatematika pada Motif Batik Lebak Dilihat Dari Sisi Nilai Filosofi dan Konsep Matematis. LEBESGUE, 1(1), 29-38.

Martin, G. E. (1982). Transformation Geometry: An Introduction to Symmetry. https://doi.org/10.1007/978-1-4612-5680-9

Ningrum, N. S. (2020). Sidoluhur, Batik Pembawa Kemuliaan. Retrieved May 4, 2021, from semarangpos.com.

Powell, A. B. (2009). Respecting mathematical diversity: An ethnomathematical perspective / Respeitando a diversidade matemática: uma perspectiva etnomatematica. Acta Scientiae, 11(2), 39-52.

Prahmana, R. C. I., & Ubiratan, D. (2020). Learning Geometry and Values From Patterns: Ethnomathematics on The Batik Patterns of Yogyakarta, Indonesia. Journal on Mathematics Education, 11,(3), 439-456.

Putra, R. Y., Wijayanto, Z., & Widodo, S. A. (2020). Ethnomathematics: Soko Tunggal Mosque For Geometry 2D Learning. Jurnal Riset Pendidikan Dan Inovasi Pembelajaran Matematika, 4(1), 10-22.

Retnawati, H. (2016). Proving Content Validity of Self-Regulated learning Scale . Research and Evaluation in Education, 2(2), 155-164.

Rubenstein, R., & Schwartz, R. (1999). The Roots of the Branches of Mathematics. Math Horizons, 6(3), 18-20.

Samijo, S., & Yohanie, D. D. (2017). Pengaruh model pembelajaran kontekstual berbasis etnomatematika pada pola batik tenun (ATBM) khas Kota Kediri terhadap kemampuan refleksi dan simetri mahasiswa semester 2 Prodi Pendidikan Matematika UNP Kediri. Jurnal Math Educator Nusantara: Wahana Publikasi Karya Tulis Ilmiah Di Bidang Pendidikan Matematika. https://doi.org/10.29407/jmen.v3i2.11975.

Setyawan, F., Kristanto, Y. D., & Ishartono, N. (2018). Preparing In-Service Teacher Using Dynamic Geometry Software. International Journal of Engineering & Technology, 7(4.30), 367.

Smith, J. T. (2000). Methods of geometry. Retrieved from https://www.wiley.com/en-us/Methods+of+Geometry-p-9781118031032

Sudirman, S., Son, A. L., & Rosyadi, R. (2018). Penggunaan Etnomatematika Pada Batik Paoman Dalam Pembelajaran Geomteri Bidang di Sekolah Dasar . IndoMath: Indonesia Mathematics Education. https://doi.org/10.30738/indomath.v1i1.2093.

Suprayo, T., Noto, M. S., & Subroto, T. (2019). Ethnomathematics exploration on units and calculus within a village farmer community. Journal of Physics: Conference Series, 1188(1).

Sutama. (2019). Metode Penelitian Pendidikan Kuantitatif, Kualitatif, PTK, Mix Method, R&D. Surakarta: Jasmine.

Taufiqoh, B. R., Nurdevi, I., & Khotimah, K. (2018). Batik Sebagai Warisan Budaya Indonesia . Seminar Nasional Bahasa Dan Sastra, 58-65. Retrieved from http://research-report.umm.ac.id/index.php/SENASBASA/article/view/2220.

Tavenner, E. (1933). Iynx and rhombus. Transactions and Proceedings of the American Philological Association, 109-127.

Tullock, G. (1997). Where is the Rectangle? Public Choice, 91(2), 149-159.

UNESCO. (2009). Indonesia Batik. Retrieved May 7, 2021, from Cultural Heritage of Humanity website: https://ich.unesco.org/en/RL/indonesian-batik-00170

Yiu, P. (2002). Introduction to the Geometry. Retrieved from http://math.fau.edu/Yiu/GeometryNotes020402.pdf

Downloads

Published

2021-09-30

How to Cite

Ishartono, N., & Ningtyas, D. A. (2021). Exploring Mathematical Concepts in Batik Sidoluhur Solo. International Journal on Emerging Mathematics Education, 5(2), 151–164. https://doi.org/10.12928/ijeme.v5i2.20660