Exploring Mathematical Concepts in Batik Sidoluhur Solo
DOI:
https://doi.org/10.12928/ijeme.v5i2.20660Keywords:
Batik Sidoluhur, Ethnography, EthnomathematicsAbstract
Many ethnomathematical studies examine the existence of mathematics concepts in Indonesian cultural products where batik is one of them. However, there is a lacunae from previous studies that examine the existence of mathematical concepts in Batik Sidoluhur. Therefore, the current study aims to explore mathematical concepts in Batik Sidoluhur, such as geometry, algebra, arithmetic, and statistics. The study used ethnography as an approach by answering four principal questions, namely "where do I start looking?", "how do I find it?", "how do I recognize that it has found something significant?" and "how to understand what it is?". By answering the questions, researchers managed to examine the mathematical concept contained in Batik Sidoluhur. From the four mathematical concepts explored, namely geometry, algebra, statistics, and arithmetic, only the concept of geometry is contained in Batik Sidoluhur and has been confirmed by a geometry expert. Sub-concepts of geometry found are (1) sub-concepts of geometry transformations such as translation and reflection, (2) plane geometry such as rhombuses, rectangles, triangles, and circles, and (3) congruence. It is hoped that the results of this study can be used as materials to promote Batik Sidoluhur to the younger generation through contextual and meaningful mathematics learning. In this article also explained how to use the context of Batik Sidoluhur in mathematics learning.References
Afifah, D. S. N., Putri, I. M., & Listiawan, T. (2020). Eksplorasi Etnomatematika pada Batik Gajah Mada Motif Sekar Jagad Tulungagung . BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(1), 101-112.
Arwanto. (2017). Eksplorasi Etnomatematika Batik Trusmi Cirebon untuk Mengungkapkan Nilai Filosofi dan Konsep Matematis . Phenomenon: Jurnal Pendidikan MIPA, 7(1), 40-49.
Berg, M. de, Cheong, O., Kreveld, M. van, & Overmars, M. (2008). Computational Geometry: Algorithms and Applications (3rd ed.). https://doi.org/10.1007/978-3-540-77974-2
DAmbrosio, U. (1985). Ethnomathematics and Its Place in the History and Pedagogy of Mathematics. For the Learning of Mathematics, 5(1), 44-48. Retrieved from http://www.jstor.org/stable/40247876.
DAmbrosio, U. (1999). Literacy, Matheracy, and Technocracy: A Trivium for Today. Mathematical Thinking and Learning, 1, 131-153.
Dhenabayu, R., Sari, H. P., & Yunita Sari, S. V. (2018). Sistem Pakar Penentuan Motif Dan Warna Batik Berdasarkan Ciri Fisik Dengan Metode Forward Chaining. Antivirus: Jurnal Ilmiah Teknik Informatika, 12(1), 1-15
Faiziyah, N., Khoirunnisa, M., Azizah, N. N., Nurrois, M., Prayitno, H. J., Desvian, & Warsito. (2021). Ethnomathematics: Mathematics in Batik Solo. Journal of Physics: Conference Series, 1720(1), 1-5.
Fathikhin, N., & Wijayanti, P. (2020). Exploration of Ngawi Batik Ethnomatematics to Unlock Philosophy Values and Mathematics Concepts. Journal Intellectual Sufism Research (JISR), 3(1), 26-37. https://doi.org/10.52032/jisr.v3i1.81
Fitri, N. L., & Prahmana, R. C. I. (2020). Designing learning trajectory of circle using the context of Ferris wheel. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(3), 247-261. https://doi.org/10.23917/jramathedu.v5i3.10961
Gaffney, D. (2021). What is Batik? Retrieved May 7, 2021, from: http://www.batikguild.org.uk/batik/what-is-batik
Irawan, A., Lestari, M., Rahayu, W., & Wulan, R. (2019). Ethnomathematics batik design Bali island. Journal of Physics: Conference Series, 1338(1), 1-5.
Johnson, R. A. (1929). Modern geometry: an elementary treatise on the geometry of the triangle and the circle. Retrieved from https://books.google.co.id/books/about/Modern_Geometry.html?id=KVdtAAAAMAAJ&redir_esc=y
Judith, H., & Markus, H. (2008). Introduction to GeoGebra. Retrieved from Geogebra website: www.geogebra.org.
Kalinggo, W. (2010). Mitos Dibalik Motif Batik Solo. Retrieved May 4, 2021, from https://bosbatik.wordpress.com/2010/07/09/mitos-dibalik-batik-solo/
Katsap, A. (2017). Opening the Door to Ethnomathematics in Israel. In Series on Mathematics Education: Vol. Volume 13. K-12 Mathematics Education in Israel (pp. 377-384).
Lisnani, Zulkardi, Putri, R. I. I., & Somakim. (2020). Etnomatematika: Pengenalan Bangun Datar Melalui Konteks Museum Negeri Sumatera Selatan Balaputera Dewa. Mosharafa: Jurnal Pendidikan Matematika, 9(September), 359-370.
Mahuda, I. (2020). Eksplorasi Etnomatematika pada Motif Batik Lebak Dilihat Dari Sisi Nilai Filosofi dan Konsep Matematis. LEBESGUE, 1(1), 29-38.
Martin, G. E. (1982). Transformation Geometry: An Introduction to Symmetry. https://doi.org/10.1007/978-1-4612-5680-9
Ningrum, N. S. (2020). Sidoluhur, Batik Pembawa Kemuliaan. Retrieved May 4, 2021, from semarangpos.com.
Powell, A. B. (2009). Respecting mathematical diversity: An ethnomathematical perspective / Respeitando a diversidade matemática: uma perspectiva etnomatematica. Acta Scientiae, 11(2), 39-52.
Prahmana, R. C. I., & Ubiratan, D. (2020). Learning Geometry and Values From Patterns: Ethnomathematics on The Batik Patterns of Yogyakarta, Indonesia. Journal on Mathematics Education, 11,(3), 439-456.
Putra, R. Y., Wijayanto, Z., & Widodo, S. A. (2020). Ethnomathematics: Soko Tunggal Mosque For Geometry 2D Learning. Jurnal Riset Pendidikan Dan Inovasi Pembelajaran Matematika, 4(1), 10-22.
Retnawati, H. (2016). Proving Content Validity of Self-Regulated learning Scale . Research and Evaluation in Education, 2(2), 155-164.
Rubenstein, R., & Schwartz, R. (1999). The Roots of the Branches of Mathematics. Math Horizons, 6(3), 18-20.
Samijo, S., & Yohanie, D. D. (2017). Pengaruh model pembelajaran kontekstual berbasis etnomatematika pada pola batik tenun (ATBM) khas Kota Kediri terhadap kemampuan refleksi dan simetri mahasiswa semester 2 Prodi Pendidikan Matematika UNP Kediri. Jurnal Math Educator Nusantara: Wahana Publikasi Karya Tulis Ilmiah Di Bidang Pendidikan Matematika. https://doi.org/10.29407/jmen.v3i2.11975.
Setyawan, F., Kristanto, Y. D., & Ishartono, N. (2018). Preparing In-Service Teacher Using Dynamic Geometry Software. International Journal of Engineering & Technology, 7(4.30), 367.
Smith, J. T. (2000). Methods of geometry. Retrieved from https://www.wiley.com/en-us/Methods+of+Geometry-p-9781118031032
Sudirman, S., Son, A. L., & Rosyadi, R. (2018). Penggunaan Etnomatematika Pada Batik Paoman Dalam Pembelajaran Geomteri Bidang di Sekolah Dasar . IndoMath: Indonesia Mathematics Education. https://doi.org/10.30738/indomath.v1i1.2093.
Suprayo, T., Noto, M. S., & Subroto, T. (2019). Ethnomathematics exploration on units and calculus within a village farmer community. Journal of Physics: Conference Series, 1188(1).
Sutama. (2019). Metode Penelitian Pendidikan Kuantitatif, Kualitatif, PTK, Mix Method, R&D. Surakarta: Jasmine.
Taufiqoh, B. R., Nurdevi, I., & Khotimah, K. (2018). Batik Sebagai Warisan Budaya Indonesia . Seminar Nasional Bahasa Dan Sastra, 58-65. Retrieved from http://research-report.umm.ac.id/index.php/SENASBASA/article/view/2220.
Tavenner, E. (1933). Iynx and rhombus. Transactions and Proceedings of the American Philological Association, 109-127.
Tullock, G. (1997). Where is the Rectangle? Public Choice, 91(2), 149-159.
UNESCO. (2009). Indonesia Batik. Retrieved May 7, 2021, from Cultural Heritage of Humanity website: https://ich.unesco.org/en/RL/indonesian-batik-00170
Yiu, P. (2002). Introduction to the Geometry. Retrieved from http://math.fau.edu/Yiu/GeometryNotes020402.pdf
Downloads
Published
How to Cite
Issue
Section
License
License and Copyright Agreement
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal. Please also carefully read the International Journal on Emerging Mathematics Education (IJEME) Author Guidelines at http://journal.uad.ac.id/index.php/IJEME/about/submissions#authorGuidelines
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities, tacitly or explicitly, of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
Copyright
Authors who publish with the International Journal on Emerging Mathematics Education (IJEME) agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.