Algoritma YOLO sebagai deteksi korban akibat kerusakan geohazard menggunakan citra (computer vision)
DOI:
https://doi.org/10.12928/bfi-jifpa.v13i1.23191Keywords:
YOLO, Bencana Alam, Deteksi Objek, Deep Learning, Convolutional Neural-Network (CNN)Abstract
Penelitian ini bertujuan untuk melakukan identifikasi objek korban akibat kerusakan geohazard menggunakan algoritma YOLO. Alat yang digunakan pada penelitian adalah algoritma YOLO dengan bantuan Google Colab. Dataset yang digunakan berjumlah 80 objek anotasi yang terdiri dari 60 objek sebagai data latih dan 20 objek sebagai data uji dengan sumber gambar yang diperoleh dari internet. Hasil penelitian menunjukkan bahwa YOLO v4 telah mampu melakukan pendeteksian objek pada setiap objek pada gambar. Hasil ini ditunjukkan dengan munculnya bounding box, serta munculnya nilai akurasi. Nilai akurasi yang muncul menunjukkan hasil kerja mesin dalam identifikasi, semakin besar nilai akurasi maka menunjukkan bahwa hasil deteksi objek semakin baik.
References
AL-Alimi, D., Shao, Y., Alalimi, A., & Abdu, A. (2020). Mask R-CNN for geospatial object detection. International Journal of Information Technology and Computer Science, 12(5), 63–72. https://doi.org/10.5815/ijitcs.2020.05.05
Arsal, M., Wardijono, B. A., & Anggraini, D. (2020). Face recognition untuk akses pegawai bank menggunakan deep learning dengan metode CNN. Jurnal Nasional Teknologi Dan Sistem Informasi, 6(1), 55–63. https://doi.org/10.25077/teknosi.v6i1.2020.55-63
Asshiddiqie, M. A. J., Rahmat, B., & Anggraeny, F. T. (2020). Deteksi tanaman tebu pada lahan pertanian menggunakan metode convolutional neural network. Jurnal Informatika Dan Sistem Informasi, 1(1), 229–237.
Aulia, D. S., Setianingsih, C., & Kallista, M. (2021). Deteksi tanda kehidupan pada korban bencana alam dengan algoritma YOLO dan open pose. E-Proceeding of Engineering, 8(5), 6162–6174.
Fang, W., Wang, L., & Ren, P. (2020). Tinier-YOLO: A real-time object detection method for constrained environments. IEEE Access, 8, 1935–1944. https://doi.org/10.1109/ACCESS.2019.2961959
Fu, K., Chen, Z., Zhang, Y., & Sun, X. (2019). Enhanced feature representation in detection for optical remote sensing images. Remote Sensing, 11(18), 1–17. https://doi.org/10.3390/rs11182095
Garnelo, M., & Shanahan, M. (2019). Reconciling deep learning with symbolic artificial intelligence: Representing objects and relations. Current Opinion in Behavioral Sciences, 29, 17–23. https://doi.org/10.1016/j.cobeha.2018.12.010
Huang, R., Pedoeem, J., & Chen, C. (2018). YOLO-LITE: A real-time object detection algorithm optimized for non-GPU computers. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 2503–2510. https://doi.org/10.1109/BigData.2018.8621865
Iqbal, M., & Trinugroho, I. A. (2008). Perkembangan riset aplikasi polarization imaging by reflection untuk objek transparan dalam bidang computer vision. Seminar Nasional Aplikasi Teknologi Informasi, 2008(Snati), 1–6.
Jana, A. P., Biswas, A., & Mohana. (2018). YOLO Based detection and classification of objects in video records. 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT 2018 - Proceedings, 2448–2452. https://doi.org/10.1109/RTEICT42901.2018.9012375
Manajang, D. J. P., Jacobus, A., Elektro, J. T., Sam, U., & Manado, R. (2020). Implementasi framework tensorflow object detection API dalam mengklasifikasi jenis kendaraan bermotor. Jurnal Teknik Informatika, 15(3), 171–178. https://doi.org/10.35793/jti.15.3.2020.29775
Niu, Y., Xu, Z., Xu, E., Li, G., Huo, Y., & Sun, W. (2021). Monocular pedestrian 3D localization for social distance monitoring. Sensors, 21(17), 1–16. https://doi.org/10.3390/s21175908
Sarosa, M., & Muna, N. (2021). Implementasi algoritma you only look once (YOLO) untuk deteksi korban bencana alam. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 8(4), 787–792. https://doi.org/10.25126/jtiik.202184407
Wu, X., Li, W., Hong, D., Tao, R., & Du, Q. (2021). Deep learning for unmanned aerial vehicle-based object detection and tracking: A survey. IEEE Geoscience and Remote Sensing Magazine, 1–24. https://doi.org/10.1109/MGRS.2021.3115137
Yang, W., & Jiachun, Z. (2018). Real-time face detection based on YOLO. 1st IEEE International Conference on Knowledge Innovation and Invention, ICKII 2018, 2, 221–224. https://doi.org/10.1109/ICKII.2018.8569109
Yanuarto, T. (2021). Catatan refleksi akhir tahun penanggulangan bencana 2021.
Yariyan, P., Zabihi, H., Wolf, I. D., Karami, M., & Amiriyan, S. (2020). Earthquake risk assessment using an integrated fuzzy analytic hierarchy process with artificial neural networks based on GIS: A case study of Sanandaj in Iran. International Journal of Disaster Risk Reduction, 50(101705), 1–62. https://doi.org/10.1016/j.ijdrr.2020.101705
Downloads
Published
Issue
Section
License
Authors who publish with Berkala Fisika Indonesia : Jurnal Ilmiah Fisika, Pembelajaran dan Aplikasinya (BFI-JIFPA) agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.