Leakage Induced in Eschericia coli Cells by Secondary Metabolites of the J7 Bacterial Isolates from the Rhizosphere of Zingiber officinale Roscoe var. Rubrum

Dianita Febrina Leswara, Nanik Sulistyani, Kintoko Kintoko

Abstract


Isolate J7 is a bacterial strain separated from the rhizosphere of Zingiber officinale Roscoe var. Rubrum that potentially produces antibacterial compounds against Escherichia coli. The study aimed to determine the antibacterial activity of the most active fraction of this isolate from its capacity to induce leakage in E. coli cells. The secondary metabolites were extracted from Isolate J7 using ethyl acetate solvent and then fractionated with different ratios of hexane and ethyl acetate solvents―1:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9, and 0:1 (v/v), ethyl acetate and methanol with 1:1 (v/v) ratio, and methanol 100%. Fractions were identified based on the spotting on the Thin-Layer Chromatography (TLC) plate. Only the most active fraction was tested to define its ability to cause leakage of cellular components like nucleic acid and protein. The leakage was scanned with a UV-Vis spectrophotometer at wavelengths of 260 and 280 nm. The results showed that F2 was the fraction that prevented the growth of E. coli most actively because it created a zone of inhibition sized 11.58±0.95 mm in diameter with the lowest MIC among the other fractions (10%). Also, based on the spectrophotometric analysis, the addition of F2 at concentrations of 10% and 20% resulted in higher levels of protein, DNA, and RNA than the negative control. In conclusion, F2 can cause plasma membrane leakage in E. coli at a concentration of 10%. Another fraction that exhibited antibacterial activity was F3. In the spotting analysis of the TLC plate, F3 appeared to have a spot profile and Rf that were similar to F2 but considerably different from the inactive fractions (i.e., showing no antibacterial activity). Observed with multiple wavelengths, the Rf values of F2 and F3 spots varied between 0.56-0.57 and 0.61-0.62 (254 nm) and 0.47-0.48 and 0.56-0.57 (366 nm), respectively. Because these spot profiles did not appear in the inactive fractions, compounds with this range of Rf values are, thereby, suspected as the active substances that inhibit the growth of E. coli.


Keywords


Escherichia coli; cell membrane leakage; secondary metabolite; Isolate J7

Full Text:

PDF

References


Agustine, B. K., Bhavsar, S.P., Kapadnis, B.P. (2004). Production of growth-dependent metabolic active against dermatophytes by Streptomyces rochei AK39. Indian Journal of Medicine, 121(3): 164-170.

Alimuddin, A.W., Mustofa, J. W., and Nurjasmi, R. (2010). An actinomycetes anticandida isolated from cajuput rhizosphere; partial identification of isolates and amplification of PKS-I genes. Indonesia Journal of Biotechnology, 15(1): 1-8.

Ambarwati & Gama, A. (2009). Isolasi actinomycetes dari tanah sawah sebagai penghasil antibiotik. Jurnal Penelitian Sains dan Teknologi, 10 (2) : 101-111.

Bergmans, L., P. Moisiadis, B, Van MeerBeek, M. Quirynen, P. Lambrechts. (2005). Microscopic Observation of Bacteria: A review highlighting the use of environmental SEM. Journal Endodontic, 38 (11) : 775-788.

Dakora FD, and Donald AP. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Kluwer Academic Publishers. Printed in the Netherlands Plant and Soil, 245:35-47.

Engelberg-Kulka, H., B. Sat, M. Reches, S. Amitai, R. Hazan. (2004). Bacterial programmed cell death systems as targets for antibiotics. Journal Trend in Microbiology, 12(2): 66-71.

Genilloud O., Ignacio G., Oscar S., Jesus M., Jose R, T., Francisca V. (2011). Current approaches to exploit actinomycetes as a source of novel natural products. Journal of Industrial Microbiology & Biotechnology, 38 (3): 375-389.

Giacometti, A., O, Cirioni, M, Simona, D, Prete, F, Barchiesi, G, Scalise (2000). Infection in cell culture Cryptosporidium parvum antibiotics inhibits short-term exposure to membrane-active. Journal Antimicrobial Agents Chemotherapy, 4 (12): 3473–3475.

Jamal, Y., Pipit I., Ahmad F., Andria A. (2013). Chemical constituents and antibacterial effect of essential oil of Javanese Pepper Leaves (Piper retrofractum Vahl.). Media Litbangkes, 23 (2): 65-72.

Kristanti, A.N., N.S. Aminah, M. Tanjung, and B. Kurniadi. (2008) . Buku Ajar Fitokimia. Airlangga University Press, Surabaya.

Miksusanti, Jennie, B.S, L., Panco, B., Trimulyadi, G. (2008). Kerusakan dinding sel Escherichia coli oleh minyak atsiri Temu Kunci (Kaempferia Pandurata). Berita Biologi, 9 (1) : 1-8.

Nurkanto, A., Listyaningsih, F., Julistiono, H., Agusta A. (2010). Eksplorasi Keanekaragaman Aktinomisetes Tanah Ternate Sebagai Sumber Antibiotik. Jurnal Biologi Indonesia, 6(3): 325-339.

Park S.J., Park. J. (2003). Inactivation kinetics of food poisoning microorganism by carbon dioxide and high hydrostatic pressure. Journal Food Sci, 68 (3) : 976-981.

Rahayu, T. (2006). Potensi antibiotik isolat bakteri rizosfer terhadap bakteri Escherichia Coli Multiresisten. Jurnal Penelitian Sains & Teknologi, 7 (2) : 81-91.

Sikkema J, AM Jan, Bont de, B Poolman. (1994). Interactions of cyclic hydrocarbons with biological membranes. Journal of Biological Chemistry 269: 8022- 8028.

Sulistyani, N. and Mulyadi. (2013). Aktivitas Cairan Kultur 12 Isolat Actinomycetes Terhadap Bakteri Resisten. KESMAS, 7(2) September 2013 : 55~ 112.

Sulistyani, N., Yosi B.M., Jaka W., Mustofa. (2016). Biodiversity of Antibiotic-Producing Soil Bacteria from Yogyakarta Special Province Indonesia. International Journal of Pharmacy and Pharmaceutical Sciences, 8 (2): 122-126.

Todar, K. (2007), Nutrition and Growth of Bacteria in Todar’s Online Textbook of Bacteriology. University Wisconsin-Madison Departement of Bacteriology Wisconsin.