Effect of Sargassum polycystum extract on liver and kidney of diabetic rats

Authors

  • Muhamad Firdaus Program Studi Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya
  • Anies Chamidah Program Studi Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya
  • Annafi Riski Nurcholis Program Studi Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya
  • Siti Yulaikah Program Studi Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya
  • Pangestuty Yeni Anggraeni Program Studi Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya
  • Widya Adi Suryanata Program Studi Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya
  • Denny Alghafihqi Program Studi Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya
  • Rendi Hardiansyah Program Studi Teknologi Hasil Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Brawijaya

DOI:

https://doi.org/10.12928/pharmaciana.v7i2.7486

Keywords:

diabetes, free radical, polyphenol, Sargassum polycystum

Abstract

Hyperglycemia has been known able to incuce the free radical formation. The reactivity of free radical can affect the dysfunction and structural adjustment on liver and kidney of the diabetic. Polyphenol is bioactive that able to ameliorate the reactivity of free radical. This substance is also contained in brown seaweed.

One of brown seaweeds that found on the Indonesia waters is Sargassum polycystum. The objective of this study was to evaluate the S. polycystum extract (SPE) to reduce the damage of the function and structure of liver and kidney in diabetic rats. SPE was obtained by drying, milling, extraction by methanol, concentrating, degassing by nitrogen gas, and finally freeze-drying, respectively. The male of rat strain Wistar was induced to diabetic by streptozotocin. This study was divided into four groups, i.e., normal, diabetic, diabetic + gliclazide and diabetic + SPE, respectively. The treatments of this experiment were executed for 45 days. The polyphenol content, malondialdehyde level, SGPT and SGOT levels, and creatinine levels were measured by the spectrophotometer, the blood glucose level was quantified by glucometer, and the insulin content was determined by ELISA method. The altering of the tissue structure was analyzed by staining method of hematoxylin and eosin. The result showed that the treatment of SPE on diabetic rats able to reduce the blood glucose level, malondialdehyde level of liver, and kidney,  SGPT and SGOT level of liver, creatinine level of blood, and increase of insulin level and improve the liver, and kidney tissue profiles, respectively. These results indicate that SPE can reduce the destruction of structure and function on liver and kidney of the diabetics.

 

References

Anonimus, 2011. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 34, 62-69

Apriani. N., Suhartono. E., Akbar. I.Z. 2011. Korelasi kadar glukosa darah dengan kadar Advanced Oxidation Protein Product (AOPP) tulang pada tikus model hiperglikemia. Jurnal Kesehatan Masyarakat, 11, 48-55

Ayala. A., Muñoz. M.F., Argüelles. S. 2014. Review Article: Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, Article ID 360438, 31 pages

Bahadoran. Z., Mirmiran. P. and Azizi. F. 2013. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. Journal of Diabetes & Metabolic Disorders, 12, 43-52

Barde. S.R., Sakhare. R.S., Kanthale. S.B., Chandak. P.G., Jamkhande. P.G. 2015. Marine bioactive agents: a short review on new marine antidiabetic compounds. Asian Pacific Journal of Tropical Disease, 5(Suppl 1), S209-S213

Eleazu. C.O., Eleazu K.C., Chukwuma. S., Essien. U.N. 2013. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal Diabetes Metabolisme Disordorder, 12, 60.

Firdaus. M. 2011. Aktivitas Antioksidan Ekstrak Rumput Laut Coklat (Sargassum echinocarpum) sebagai Pencegah Disfungsi Sel Endotelium Aorta Tikus Diabetes Melitus. Disertasi. Institut Pertanian Bogor, Bogor

Firdaus. M. 2013. Indeks Aktivitas Antioksidan Ekstrak Rumput Laut Coklat (Sargassum aquifolium). Jurnal Pengolahan Hasil Perikanan Indonesia, 16, 42-47

Firdaus. M. 2017. Diabetes dan rumput laut cokelat. UB Press. Malang.159 halaman.

Fraga. C.G., Galleano. M., Verstraeten. S.V., Oteiza. P.I. 2010. Basic biochemical mechanisms behind the health benefits of polyphenols. Molecular Aspects of Medicine, 31, 435–445

Giacco. F. and Brownlee. M. 2010. Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070

Hajiaghaalipour. F., Khalilpourfarshbafi. M., Arya. A. 2015. Modulation of Glucose Transporter Protein by Dietary Flavonoids in Type 2 Diabetes Mellitus. International Journal of Biological Sciences. 2015; 11(5): 508-524

Harris. E.H. 2005. Elevated Liver Function Tests in Type 2 Diabetes. Clinical Diabetes, 23, 115-119

Huang. D., Jing. Y., Chen. W., Yao. F., Huang. G., Suna. L. 2015. Evaluation of Hypoglycemic Effects of Polyphenols and Extracts from Penthorum chinense. Journal of Ethnopharmacology, 107, 15-21

Jay. D., Hitomi, H., Griendling. K.K. 2006. Oxidative stress and diabetic cardiovascular complications. Free Radical Biology & Medicine, 40, 183 – 192

Kang. M., Chung. H., Kim. J., Son. B.W., Jung. H.A., Choi. J.S. 2013. Dieckol isolated from brown seaweed Ecklonia cava attenuates type II diabetes in db/db mouse model. Food and Chemical Toxicology, 53, 294–298

Kim. M.-J., Kim. H. K., 2012. Insulinotrophic and hypolipidemic effects of Ecklonia cava in streptozotocin-induced diabetic mice. Asian Pacific Journal of Tropical Medicine, 374-379

Koivikko. R., Loponen. J., Honkanen, Jormalainen. V. 2005. Contents of Soluble, Cell-Wall-Bound and Exuded Phlorotannins in The Brown Alga Fucus vesiculosus, with Implications on Their Ecological Function. Journal of Chemical Ecology, 31, 195-212

Kuyvenhoven. J.P. and Meinders. A.E. 1999. Oxidative stress and diabetes mellitus: Pathogenesis of long-term complications. European Journal of Internal Medicine, 10, 9–19

Lee S.-H., and Jeon. Y.-J. 2013. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms, Fitoterapia, 86, 129–136.

Memişoğullari. R., Türkeli M., Bakan E. Akçay F. 2008. Effect of Metformin or Gliclazide on Lipid Peroxidation and Antioxidant Levels in Patients with Diabetes Mellitus. Turkish Journal of Medical Science, 38 (6), 545-548

Mohabbati-Kalejahi. E., Azimirad. V., Bahrami. M., Ganbari. A. 2012. A review on creatinine measurement techniques. Talanta, 97, 1-8

Purnamasari. D., Waspadji. S., Adam. J.M.F., Rudijanto. A., Tahapary. D. 2013. Indonesian Clinical Practice Guidelines for Diabetes in Pregnancy. JAFES, 28, 9-13

Sarkar. A., Tiwari. A., Bhasin. P.S., Mitra. M. 2011. Pharmacological and Pharmaceutical Profile of Gliclazide: A Review. Journal of Applied Pharmaceutical Science, 1, 11-19

Stiger-Pouvreau. V., Jégou. C., Cérantola S., Guérard F., Le Lann. K. 2014. Phlorotannins in Sargassaceae Species from Brittany (France): Interesting Molecules for Ecophysiological and Valorisation Purposes. Advances in Botanical Research, 47, 379-411

Suarsana. I.N., Wresdiyati. T., Suprayogi. A. 2013. Respon stres oksidatif dan pemberian iso flavon terhadap aktivitas enzim superoksida dismutase dan peroksidasi lipis pada hati tikus. JITV, 18, 45-54.

Rengasamy. K.R.R., Kulkarni. M., Strik. W., Staden. J. 2014. Advances in algal drug research with emphasis on enzyme inhibitors. Biotechnology Advances, 40, 10-21

Ullah. A., Khan. A., Khan. I. 2015. Diabetes mellitus and Oxidative Stress: A Concise Review. Saudi Pharmaceutical Journal, 2, 1-8

Wilcox. G. 2005. Insulin and Insulin Resistance. Clinical Biochemistry Review, 26 (2), 19–39

Downloads

Published

2017-11-20

Issue

Section

Pharmacology