Phytochemical constituent, α-amylase and α-glucosidase inhibitory activities of Black Soybean (Glycine soja (L.) Merr.) ethanol extract
DOI:
https://doi.org/10.12928/pharmaciana.v14i3.29919Abstract
Diabetes is characterized as a hyperglycemic condition impacted by β-cell dysfunction and insulin deficiency. Black soybean (Glycine soja (L.) Merr.) is widely known as an origin of nutritious food that has shown activities in preventing cardiovascular disease and reducing hyperglycemia. This research aimed to evaluate the potential of black soybeans ethanol extract (BSEE) as an α-amylase and α-glucosidase activity inhibitor. Black soybean seeds were extracted using the Soxhlet method with 50% ethanol as a solvent. The extract Soybean seeds were screened for the presence of phytochemicals. Inhibitory activity of α-amylase and α-glucosidase enzymes was tested in vitro with acarbose as a control. The absorbance measurement was conducted at 565 nm and 400 nm, respectively. BSEE contained alkaloids, flavonoids, polyphenols, saponins, quinones, tannins, and terpenoids. The results indicated that BSEE exhibited a weak inhibitory effect of α-amylase enzyme activity, with an IC50 value of 360.37 ± 20.80 µg/ml, in contrast to acarbose, which showed a significantly lower IC50 of 4.02 ± 0.56 µg/ml. Meanwhile, BSEE was classified as an active inhibitor of α-glucosidase enzyme activity, presenting 25.67 ± 0.27 µg/mL IC50 value, while acarbose demonstrated 10.85 ± 0.5 µg/mL IC50 value. In conclusion, BSEE inhibits α-amylase and α-glucosidase.
References
Alam, U., Asghar, O., Azmi, S., & Malik, R. A. (2014). General aspects of diabetes mellitus (pp. 211–222). https://doi.org/10.1016/B978-0-444-53480-4.00015-1
Baynest, H. W. (2015). Classification, pathophysiology, diagnosis and management of Diabetes Mellitus. Journal of Diabetes & Metabolism, 06(05). https://doi.org/10.4172/2155-6156.1000541
Benzidia, B., Barbouchi, M., Hammouch, H., Belahbib, N., Zouarhi, M., Erramli, H., Ait Daoud, N., Badrane, N., & Hajjaji, N. (2019). Chemical composition and antioxidant activity of tannins extract from green rind of Aloe vera (L.) Burm. F. Journal of King Saud University - Science, 31(4), 1175–1181. https://doi.org/10.1016/j.jksus.2018.05.022
Chen, G., & Guo, M. (2017). Rapid screening for α-glucosidase inhibitors from gymnema sylvestre by affinity ultrafiltration–HPLC-MS. Frontiers in Pharmacology, 8. https://doi.org/10.3389/fphar.2017.00228
Dipiro, J. T., Posey, L. M., Yee, G. C., Haines, S. T., Nolin, T. D., & Ellingrod, V. (2020). Pharmacotherapy: a pathophysiologic approach (Eleventh E). McGraw-Hill Companies
Gondokesumo, M. E., Kusuma, H. S. W., & Widowati, W. (2017). α-/β-Glucosidase and α-Amylase Inhibitory activities of Roselle (Hibiscus sabdariffa L.) ethanol extract. Molecular and Cellular Biomedical Sciences, 1(1), 34. https://doi.org/10.21705/mcbs.v1i1.3
Hamid, H. A., Yusoff, M. M., Liu, M., & Karim, M. R. (2015). α-Glucosidase and α-amylase inhibitory constituents of Tinospora crispa: Isolation and chemical profile confirmation by ultra-high performance liquid chromatography-quadrupole time-of-flight/mass spectrometry. Journal of Functional Foods, 16, 74–80. https://doi.org/10.1016/j.jff.2015.04.011
Hidayat, M., Soeng, S., Prahastuti, S., Erawijantari, P. P., & Widowati, W. (2015). Inhibitory potential of ethanol extract of Detam 1 soybean (Glycine max) seed and Jati belanda (Guazuma ulmifolia) leaves on adipogenesis and obesity models in 3T3-L1 cell line. Journal of Scientific Research & Reports, 6(4), 304–312. https://doi.org/10.9734/JSRR/2015/16273
Jia, J., Dou, B., Gao, M., Zhang, C., Liu, Y., & Zhang, N. (2024). Effect of genistein on starch digestion in vitro and its mechanism of action. Foods, 13(17), 2809. https://doi.org/10.3390/foods13172809
Kurimoto, Y., Shibayama, Y., Inoue, S., Soga, M., Takikawa, M., Ito, C., Nanba, F., Yoshida, T., Yamashita, Y., Ashida, H., & Tsuda, T. (2013). Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-Activated protein kinase in diabetic mice. Journal of Agricultural and Food Chemistry, 61(23), 5558–5564. https://doi.org/10.1021/jf401190y
Li, F., Zhang, B., Chen, G., & Fu, X. (2017). The novel contributors of anti-diabetic potential in mulberry polyphenols revealed by UHPLC-HR-ESI-TOF-MS/MS. Food Research International, 100, 873-884. https://doi.org/10.1016/j.foodres.2017.06.052
Marjoni, & Zulfisa. (2017). Antioxidant activity of methanol extract/fractions of Senggani leaves (Melastoma candidum D. Don). Pharmaceutica Analytica Acta, 08(08), 1–6. https://doi.org/10.4172/2153-2435.1000557
Pavani, C., & Shasthree, T. (2022). Qualitative screening and quantitative determination of secondary metabolites from different plant extracts of Solanum khasianum Clarke. Research Journal of Chemistry and Environment, 26(12), 113–123. https://doi.org/10.25303/2612rjce1130123
Prahastuti, S, Hidayat, M., Hasianna, S. T., Widowati, W., Amalia, A., Yusepany, D. T., Rizal, R., & Kusuma, H. S. W. (2019). Antioxidant potential ethanolic extract of Glycine max (l.) Merr. Var. Detam and daidzein. Journal of Physics: Conference Series, 1374(1), 012020. https://doi.org/10.1088/1742-6596/1374/1/012020
Prahastuti, Sijani, Hidayat, M., Kurniadi, M. W., & Christiany, S. (2016). Potency of Black Soybean (Glycine max L. Merr) and Jati Belanda Leaves (Guazuma ulmifolia Lamk) for Dyslipidemia Treatment In Vivo. Journal Of Medicine & Health, 1(3). https://doi.org/10.28932/jmh.v1i3.515
Proença, C., Freitas, M., Ribeiro, D., Oliveira, E. F. T., Sousa, J. L. C., Tomé, S. M., Ramos, M. J., Silva, A. M. S., Fernandes, P. A., & Fernandes, E. (2017). α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1216–1228. https://doi.org/10.1080/14756366.2017.1368503
Promyos, N., Temviriyanukul, P., & Suttisansanee, U. (2020). Investigation of anthocyanidins and anthocyanins for targeting α-glucosidase in Diabetes Mellitus. Preventive Nutrition and Food Science, 25(3), 263–271. https://doi.org/10.3746/pnf.2020.25.3.263
Rao, U. M. (2016). Phytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of Musa paradisiaca. Malaysian Journal of Analytical Science, 20(5), 1181–1190. https://doi.org/10.17576/mjas-2016-2005-25
Rosemar, Rosidah, & Haro, G. (2014). Antidiabetic effect of roselle calyces extracts (Hibiscus sabdariffa L.) in streptozotocin-induced mice. International Journal of PharmTech Research, 6(5), 1703–1711
Safrina, U., Wardiyah, W., & Cartika, H. (2022). Evaluation of total flavonoid, total phenolic, and antioxidant activity of etlingera elatior (Jack) R.M.Sm Flower, Fruit, and Leaf. Majalah Obat Tradisional, 27(1), 50. https://doi.org/10.22146/mot.72210
Si, H., & Liu, D. (2014). Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. The Journal of Nutritional Biochemistry, 25(6), 581–591. https://doi.org/10.1016/j.jnutbio.2014.02.001
Soeng, S., Evacuasiany, E., Widowati, W., & Fauziah, N. (2015). Antioxidant and hypoglycemic activities of extract and fractions of Rambutan seeds (Nephelium lappaceum L.). Biomedical Enginering, 1(1), 13–18
Alam, U., Asghar, O., Azmi, S., & Malik, R. A. (2014). General aspects of diabetes mellitus (pp. 211–222). https://doi.org/10.1016/B978-0-444-53480-4.00015-1
Baynest, H. W. (2015). Classification, pathophysiology, diagnosis and management of Diabetes Mellitus. Journal of Diabetes & Metabolism, 06(05). https://doi.org/10.4172/2155-6156.1000541
Benzidia, B., Barbouchi, M., Hammouch, H., Belahbib, N., Zouarhi, M., Erramli, H., Ait Daoud, N., Badrane, N., & Hajjaji, N. (2019). Chemical composition and antioxidant activity of tannins extract from green rind of Aloe vera (L.) Burm. F. Journal of King Saud University - Science, 31(4), 1175–1181. https://doi.org/10.1016/j.jksus.2018.05.022
Chen, G., & Guo, M. (2017). Rapid screening for α-glucosidase inhibitors from gymnema sylvestre by affinity ultrafiltration–HPLC-MS. Frontiers in Pharmacology, 8. https://doi.org/10.3389/fphar.2017.00228
Dipiro, J. T., Posey, L. M., Yee, G. C., Haines, S. T., Nolin, T. D., & Ellingrod, V. (2020). Pharmacotherapy: a pathophysiologic approach (Eleventh E). McGraw-Hill Companies
Gondokesumo, M. E., Kusuma, H. S. W., & Widowati, W. (2017). α-/β-Glucosidase and α-Amylase Inhibitory activities of Roselle (Hibiscus sabdariffa L.) ethanol extract. Molecular and Cellular Biomedical Sciences, 1(1), 34. https://doi.org/10.21705/mcbs.v1i1.3
Hamid, H. A., Yusoff, M. M., Liu, M., & Karim, M. R. (2015). α-Glucosidase and α-amylase inhibitory constituents of Tinospora crispa: Isolation and chemical profile confirmation by ultra-high performance liquid chromatography-quadrupole time-of-flight/mass spectrometry. Journal of Functional Foods, 16, 74–80. https://doi.org/10.1016/j.jff.2015.04.011
Hidayat, M., Soeng, S., Prahastuti, S., Erawijantari, P. P., & Widowati, W. (2015). Inhibitory potential of ethanol extract of Detam 1 soybean (Glycine max) seed and Jati belanda (Guazuma ulmifolia) leaves on adipogenesis and obesity models in 3T3-L1 cell line. Journal of Scientific Research & Reports, 6(4), 304–312. https://doi.org/10.9734/JSRR/2015/16273
Jia, J., Dou, B., Gao, M., Zhang, C., Liu, Y., & Zhang, N. (2024). Effect of genistein on starch digestion in vitro and its mechanism of action. Foods, 13(17), 2809. https://doi.org/10.3390/foods13172809
Kurimoto, Y., Shibayama, Y., Inoue, S., Soga, M., Takikawa, M., Ito, C., Nanba, F., Yoshida, T., Yamashita, Y., Ashida, H., & Tsuda, T. (2013). Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-Activated protein kinase in diabetic mice. Journal of Agricultural and Food Chemistry, 61(23), 5558–5564. https://doi.org/10.1021/jf401190y
Li, F., Zhang, B., Chen, G., & Fu, X. (2017). The novel contributors of anti-diabetic potential in mulberry polyphenols revealed by UHPLC-HR-ESI-TOF-MS/MS. Food Research International, 100, 873-884. https://doi.org/10.1016/j.foodres.2017.06.052
Marjoni, & Zulfisa. (2017). Antioxidant activity of methanol extract/fractions of Senggani leaves (Melastoma candidum D. Don). Pharmaceutica Analytica Acta, 08(08), 1–6. https://doi.org/10.4172/2153-2435.1000557
Pavani, C., & Shasthree, T. (2022). Qualitative screening and quantitative determination of secondary metabolites from different plant extracts of Solanum khasianum Clarke. Research Journal of Chemistry and Environment, 26(12), 113–123. https://doi.org/10.25303/2612rjce1130123
Prahastuti, S, Hidayat, M., Hasianna, S. T., Widowati, W., Amalia, A., Yusepany, D. T., Rizal, R., & Kusuma, H. S. W. (2019). Antioxidant potential ethanolic extract of Glycine max (l.) Merr. Var. Detam and daidzein. Journal of Physics: Conference Series, 1374(1), 012020. https://doi.org/10.1088/1742-6596/1374/1/012020
Prahastuti, Sijani, Hidayat, M., Kurniadi, M. W., & Christiany, S. (2016). Potency of Black Soybean (Glycine max L. Merr) and Jati Belanda Leaves (Guazuma ulmifolia Lamk) for Dyslipidemia Treatment In Vivo. Journal Of Medicine & Health, 1(3). https://doi.org/10.28932/jmh.v1i3.515
Proença, C., Freitas, M., Ribeiro, D., Oliveira, E. F. T., Sousa, J. L. C., Tomé, S. M., Ramos, M. J., Silva, A. M. S., Fernandes, P. A., & Fernandes, E. (2017). α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1216–1228. https://doi.org/10.1080/14756366.2017.1368503
Promyos, N., Temviriyanukul, P., & Suttisansanee, U. (2020). Investigation of anthocyanidins and anthocyanins for targeting α-glucosidase in Diabetes Mellitus. Preventive Nutrition and Food Science, 25(3), 263–271. https://doi.org/10.3746/pnf.2020.25.3.263
Rao, U. M. (2016). Phytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of Musa paradisiaca. Malaysian Journal of Analytical Science, 20(5), 1181–1190. https://doi.org/10.17576/mjas-2016-2005-25
Rosemar, Rosidah, & Haro, G. (2014). Antidiabetic effect of roselle calyces extracts (Hibiscus sabdariffa L.) in streptozotocin-induced mice. International Journal of PharmTech Research, 6(5), 1703–1711
Safrina, U., Wardiyah, W., & Cartika, H. (2022). Evaluation of total flavonoid, total phenolic, and antioxidant activity of etlingera elatior (Jack) R.M.Sm Flower, Fruit, and Leaf. Majalah Obat Tradisional, 27(1), 50. https://doi.org/10.22146/mot.72210
Si, H., & Liu, D. (2014). Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. The Journal of Nutritional Biochemistry, 25(6), 581–591. https://doi.org/10.1016/j.jnutbio.2014.02.001
Soeng, S., Evacuasiany, E., Widowati, W., & Fauziah, N. (2015). Antioxidant and hypoglycemic activities of extract and fractions of Rambutan seeds (Nephelium lappaceum L.). Biomedical Enginering, 1(1), 13–18
Widowati, W., Prahastuti, S., Hidayat, M., Hasianna, S. T., Wahyudianingsih, R., Eltania, T. F., Azizah, A. M., Aviani, J. K., Subangkit, M., Handayani, R. A. S., & Kusuma, H. S. W. (2022). Detam 1 black soybean against cisplatin-induced acute ren failure on rat model via antioxidant, antiinflammatory and antiapoptosis potential. Journal of Traditional and Complementary Medicine, 12(4), 426–435. https://doi.org/10.1016/j.jtcme.2022.01.004
Widowati, W., Tjokropranoto, R., Wahyudianingsih, R., Tih, F., Sadeli, L., Kusuma, H. S. W., Fuad, N. A., Girsang, E., & Agatha, F. A. (2021). Antidiabetic potential Yacon (Smallanthus sonchifolius (Poepp.) H. Rob.) leaf extract via antioxidant activities, inhibition of α-glucosidase, α-amylase, G-6-Pase by in vitro assay. Journal of Reports in Pharmaceutical Sciences, 10(2), 247–255. https://doi.org/10.4103/jrptps.JRPTPS_3_21
Widowati, W., Wargasetia, T. L., Afifah, E., Mozef, T., Kusuma, H. S. W., Nufus, H., Arumwardana, S., Amalia, A., & Rizal, R. (2018). Antioxidant and antidiabetic potential of Curcuma longa and its compounds. Asian Journal of Agriculture and Biology, 6(2), 149–161
World Health Organization. (2019). Classification of diabetes mellitus
Yamashita, Y., Nakamura, A., Nanba, F., Saito, S., Toda, T., Nakagawa, J., & Ashida, H. (2020). Black soybean improves vascular function and blood pressure: a randomized, placebo controlled, crossover trial in humans. Nutrients, 12(9), 2755. https://doi.org/10.3390/nu12092755
Yang, J., Wang, X., Zhang, C., Ma, L., Wei, T., Zhao, Y., & Peng, X. (2021). Comparative study of inhibition mechanisms of structurally different flavonoid compounds on α-glucosidase and synergistic effect with acarbose. Food Chemistry, 347, 129056. https://doi.org/10.1016/j.foodchem.2021.129056
Zhu, J., Chen, C., Zhang, B., & Huang, Q. (2020). The inhibitory effects of flavonoids on α-amylase and α-glucosidase. Critical Reviews in Food Science and Nutrition, 60(4), 695–708. https://doi.org/10.1080/10408398.2018.1548428
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Wahyu Widowati, Afifah Bambang Sutjiatmo, Suci Narvikasari, Ananda Khairunisa Solihat, Hanna Sari Widya Kusuma, Fadhilah Haifa Zahiroh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Pharmaciana agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.