Phytochemical constituent, α-amylase and α-glucosidase inhibitory activities of Black Soybean (Glycine soja (L.) Merr.) ethanol extract

Authors

  • Afifah Bambang Sutjiatmo Universitas Jenderal Achmad Yani
  • Suci Narvikasari Universitas Jenderal Achmad Yani
  • Ananda Khairunisa Solihat Universitas Jenderal Achmad Yani
  • Wahyu Widowati Universitas Jenderal Achmad Yani
  • Hanna Sari Widya Kusuma Aretha Medika Utama
  • Fadhilah Haifa Zahiroh Universitas Pendidikan Indonesia

DOI:

https://doi.org/10.12928/pharmaciana.v14i3.29919

Abstract

Diabetes is characterized as a hyperglycemic condition impacted by β-cell dysfunction and insulin deficiency. Black soybean (Glycine soja (L.) Merr.) is widely known as an origin of nutritious food that has shown activities in preventing cardiovascular disease and reducing hyperglycemia. This research aimed to evaluate the potential of black soybeans ethanol extract (BSEE) as an α-amylase and α-glucosidase activity inhibitor. Black soybean seeds were extracted using the Soxhlet method with 50% ethanol as a solvent. The extract Soybean seeds were screened for the presence of phytochemicals. Inhibitory activity of α-amylase and α-glucosidase enzymes was tested in vitro with acarbose as a control. The absorbance measurement was conducted at 565 nm and 400 nm, respectively. BSEE contained alkaloids, flavonoids, polyphenols, saponins, quinones, tannins, and terpenoids. The results indicated that BSEE exhibited a weak inhibitory effect of α-amylase enzyme activity, with an IC50 value of 360.37 ± 20.80 µg/ml, in contrast to acarbose, which showed a significantly lower IC50 of 4.02 ± 0.56 µg/ml. Meanwhile, BSEE was classified as an active inhibitor of α-glucosidase enzyme activity, presenting 25.67 ± 0.27 µg/mL IC50 value, while acarbose demonstrated 10.85 ± 0.5 µg/mL IC50 value. In conclusion, BSEE inhibits α-amylase and α-glucosidase.

References

Alam, U., Asghar, O., Azmi, S., & Malik, R. A. (2014). General aspects of diabetes mellitus (pp. 211–222). https://doi.org/10.1016/B978-0-444-53480-4.00015-1

Baynest, H. W. (2015). Classification, pathophysiology, diagnosis and management of Diabetes Mellitus. Journal of Diabetes & Metabolism, 06(05). https://doi.org/10.4172/2155-6156.1000541

Benzidia, B., Barbouchi, M., Hammouch, H., Belahbib, N., Zouarhi, M., Erramli, H., Ait Daoud, N., Badrane, N., & Hajjaji, N. (2019). Chemical composition and antioxidant activity of tannins extract from green rind of Aloe vera (L.) Burm. F. Journal of King Saud University - Science, 31(4), 1175–1181. https://doi.org/10.1016/j.jksus.2018.05.022

Chen, G., & Guo, M. (2017). Rapid screening for α-glucosidase inhibitors from gymnema sylvestre by affinity ultrafiltration–HPLC-MS. Frontiers in Pharmacology, 8. https://doi.org/10.3389/fphar.2017.00228

Dipiro, J. T., Posey, L. M., Yee, G. C., Haines, S. T., Nolin, T. D., & Ellingrod, V. (2020). Pharmacotherapy: a pathophysiologic approach (Eleventh E). McGraw-Hill Companies

Gondokesumo, M. E., Kusuma, H. S. W., & Widowati, W. (2017). α-/β-Glucosidase and α-Amylase Inhibitory activities of Roselle (Hibiscus sabdariffa L.) ethanol extract. Molecular and Cellular Biomedical Sciences, 1(1), 34. https://doi.org/10.21705/mcbs.v1i1.3

Hamid, H. A., Yusoff, M. M., Liu, M., & Karim, M. R. (2015). α-Glucosidase and α-amylase inhibitory constituents of Tinospora crispa: Isolation and chemical profile confirmation by ultra-high performance liquid chromatography-quadrupole time-of-flight/mass spectrometry. Journal of Functional Foods, 16, 74–80. https://doi.org/10.1016/j.jff.2015.04.011

Hidayat, M., Soeng, S., Prahastuti, S., Erawijantari, P. P., & Widowati, W. (2015). Inhibitory potential of ethanol extract of Detam 1 soybean (Glycine max) seed and Jati belanda (Guazuma ulmifolia) leaves on adipogenesis and obesity models in 3T3-L1 cell line. Journal of Scientific Research & Reports, 6(4), 304–312. https://doi.org/10.9734/JSRR/2015/16273

Jia, J., Dou, B., Gao, M., Zhang, C., Liu, Y., & Zhang, N. (2024). Effect of genistein on starch digestion in vitro and its mechanism of action. Foods, 13(17), 2809. https://doi.org/10.3390/foods13172809

Kurimoto, Y., Shibayama, Y., Inoue, S., Soga, M., Takikawa, M., Ito, C., Nanba, F., Yoshida, T., Yamashita, Y., Ashida, H., & Tsuda, T. (2013). Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-Activated protein kinase in diabetic mice. Journal of Agricultural and Food Chemistry, 61(23), 5558–5564. https://doi.org/10.1021/jf401190y

Li, F., Zhang, B., Chen, G., & Fu, X. (2017). The novel contributors of anti-diabetic potential in mulberry polyphenols revealed by UHPLC-HR-ESI-TOF-MS/MS. Food Research International, 100, 873-884. https://doi.org/10.1016/j.foodres.2017.06.052

Marjoni, & Zulfisa. (2017). Antioxidant activity of methanol extract/fractions of Senggani leaves (Melastoma candidum D. Don). Pharmaceutica Analytica Acta, 08(08), 1–6. https://doi.org/10.4172/2153-2435.1000557

Pavani, C., & Shasthree, T. (2022). Qualitative screening and quantitative determination of secondary metabolites from different plant extracts of Solanum khasianum Clarke. Research Journal of Chemistry and Environment, 26(12), 113–123. https://doi.org/10.25303/2612rjce1130123

Prahastuti, S, Hidayat, M., Hasianna, S. T., Widowati, W., Amalia, A., Yusepany, D. T., Rizal, R., & Kusuma, H. S. W. (2019). Antioxidant potential ethanolic extract of Glycine max (l.) Merr. Var. Detam and daidzein. Journal of Physics: Conference Series, 1374(1), 012020. https://doi.org/10.1088/1742-6596/1374/1/012020

Prahastuti, Sijani, Hidayat, M., Kurniadi, M. W., & Christiany, S. (2016). Potency of Black Soybean (Glycine max L. Merr) and Jati Belanda Leaves (Guazuma ulmifolia Lamk) for Dyslipidemia Treatment In Vivo. Journal Of Medicine & Health, 1(3). https://doi.org/10.28932/jmh.v1i3.515

Proença, C., Freitas, M., Ribeiro, D., Oliveira, E. F. T., Sousa, J. L. C., Tomé, S. M., Ramos, M. J., Silva, A. M. S., Fernandes, P. A., & Fernandes, E. (2017). α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1216–1228. https://doi.org/10.1080/14756366.2017.1368503

Promyos, N., Temviriyanukul, P., & Suttisansanee, U. (2020). Investigation of anthocyanidins and anthocyanins for targeting α-glucosidase in Diabetes Mellitus. Preventive Nutrition and Food Science, 25(3), 263–271. https://doi.org/10.3746/pnf.2020.25.3.263

Rao, U. M. (2016). Phytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of Musa paradisiaca. Malaysian Journal of Analytical Science, 20(5), 1181–1190. https://doi.org/10.17576/mjas-2016-2005-25

Rosemar, Rosidah, & Haro, G. (2014). Antidiabetic effect of roselle calyces extracts (Hibiscus sabdariffa L.) in streptozotocin-induced mice. International Journal of PharmTech Research, 6(5), 1703–1711

Safrina, U., Wardiyah, W., & Cartika, H. (2022). Evaluation of total flavonoid, total phenolic, and antioxidant activity of etlingera elatior (Jack) R.M.Sm Flower, Fruit, and Leaf. Majalah Obat Tradisional, 27(1), 50. https://doi.org/10.22146/mot.72210

Si, H., & Liu, D. (2014). Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. The Journal of Nutritional Biochemistry, 25(6), 581–591. https://doi.org/10.1016/j.jnutbio.2014.02.001

Soeng, S., Evacuasiany, E., Widowati, W., & Fauziah, N. (2015). Antioxidant and hypoglycemic activities of extract and fractions of Rambutan seeds (Nephelium lappaceum L.). Biomedical Enginering, 1(1), 13–18

Alam, U., Asghar, O., Azmi, S., & Malik, R. A. (2014). General aspects of diabetes mellitus (pp. 211–222). https://doi.org/10.1016/B978-0-444-53480-4.00015-1

Baynest, H. W. (2015). Classification, pathophysiology, diagnosis and management of Diabetes Mellitus. Journal of Diabetes & Metabolism, 06(05). https://doi.org/10.4172/2155-6156.1000541

Benzidia, B., Barbouchi, M., Hammouch, H., Belahbib, N., Zouarhi, M., Erramli, H., Ait Daoud, N., Badrane, N., & Hajjaji, N. (2019). Chemical composition and antioxidant activity of tannins extract from green rind of Aloe vera (L.) Burm. F. Journal of King Saud University - Science, 31(4), 1175–1181. https://doi.org/10.1016/j.jksus.2018.05.022

Chen, G., & Guo, M. (2017). Rapid screening for α-glucosidase inhibitors from gymnema sylvestre by affinity ultrafiltration–HPLC-MS. Frontiers in Pharmacology, 8. https://doi.org/10.3389/fphar.2017.00228

Dipiro, J. T., Posey, L. M., Yee, G. C., Haines, S. T., Nolin, T. D., & Ellingrod, V. (2020). Pharmacotherapy: a pathophysiologic approach (Eleventh E). McGraw-Hill Companies

Gondokesumo, M. E., Kusuma, H. S. W., & Widowati, W. (2017). α-/β-Glucosidase and α-Amylase Inhibitory activities of Roselle (Hibiscus sabdariffa L.) ethanol extract. Molecular and Cellular Biomedical Sciences, 1(1), 34. https://doi.org/10.21705/mcbs.v1i1.3

Hamid, H. A., Yusoff, M. M., Liu, M., & Karim, M. R. (2015). α-Glucosidase and α-amylase inhibitory constituents of Tinospora crispa: Isolation and chemical profile confirmation by ultra-high performance liquid chromatography-quadrupole time-of-flight/mass spectrometry. Journal of Functional Foods, 16, 74–80. https://doi.org/10.1016/j.jff.2015.04.011

Hidayat, M., Soeng, S., Prahastuti, S., Erawijantari, P. P., & Widowati, W. (2015). Inhibitory potential of ethanol extract of Detam 1 soybean (Glycine max) seed and Jati belanda (Guazuma ulmifolia) leaves on adipogenesis and obesity models in 3T3-L1 cell line. Journal of Scientific Research & Reports, 6(4), 304–312. https://doi.org/10.9734/JSRR/2015/16273

Jia, J., Dou, B., Gao, M., Zhang, C., Liu, Y., & Zhang, N. (2024). Effect of genistein on starch digestion in vitro and its mechanism of action. Foods, 13(17), 2809. https://doi.org/10.3390/foods13172809

Kurimoto, Y., Shibayama, Y., Inoue, S., Soga, M., Takikawa, M., Ito, C., Nanba, F., Yoshida, T., Yamashita, Y., Ashida, H., & Tsuda, T. (2013). Black soybean seed coat extract ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-Activated protein kinase in diabetic mice. Journal of Agricultural and Food Chemistry, 61(23), 5558–5564. https://doi.org/10.1021/jf401190y

Li, F., Zhang, B., Chen, G., & Fu, X. (2017). The novel contributors of anti-diabetic potential in mulberry polyphenols revealed by UHPLC-HR-ESI-TOF-MS/MS. Food Research International, 100, 873-884. https://doi.org/10.1016/j.foodres.2017.06.052

Marjoni, & Zulfisa. (2017). Antioxidant activity of methanol extract/fractions of Senggani leaves (Melastoma candidum D. Don). Pharmaceutica Analytica Acta, 08(08), 1–6. https://doi.org/10.4172/2153-2435.1000557

Pavani, C., & Shasthree, T. (2022). Qualitative screening and quantitative determination of secondary metabolites from different plant extracts of Solanum khasianum Clarke. Research Journal of Chemistry and Environment, 26(12), 113–123. https://doi.org/10.25303/2612rjce1130123

Prahastuti, S, Hidayat, M., Hasianna, S. T., Widowati, W., Amalia, A., Yusepany, D. T., Rizal, R., & Kusuma, H. S. W. (2019). Antioxidant potential ethanolic extract of Glycine max (l.) Merr. Var. Detam and daidzein. Journal of Physics: Conference Series, 1374(1), 012020. https://doi.org/10.1088/1742-6596/1374/1/012020

Prahastuti, Sijani, Hidayat, M., Kurniadi, M. W., & Christiany, S. (2016). Potency of Black Soybean (Glycine max L. Merr) and Jati Belanda Leaves (Guazuma ulmifolia Lamk) for Dyslipidemia Treatment In Vivo. Journal Of Medicine & Health, 1(3). https://doi.org/10.28932/jmh.v1i3.515

Proença, C., Freitas, M., Ribeiro, D., Oliveira, E. F. T., Sousa, J. L. C., Tomé, S. M., Ramos, M. J., Silva, A. M. S., Fernandes, P. A., & Fernandes, E. (2017). α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1216–1228. https://doi.org/10.1080/14756366.2017.1368503

Promyos, N., Temviriyanukul, P., & Suttisansanee, U. (2020). Investigation of anthocyanidins and anthocyanins for targeting α-glucosidase in Diabetes Mellitus. Preventive Nutrition and Food Science, 25(3), 263–271. https://doi.org/10.3746/pnf.2020.25.3.263

Rao, U. M. (2016). Phytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of Musa paradisiaca. Malaysian Journal of Analytical Science, 20(5), 1181–1190. https://doi.org/10.17576/mjas-2016-2005-25

Rosemar, Rosidah, & Haro, G. (2014). Antidiabetic effect of roselle calyces extracts (Hibiscus sabdariffa L.) in streptozotocin-induced mice. International Journal of PharmTech Research, 6(5), 1703–1711

Safrina, U., Wardiyah, W., & Cartika, H. (2022). Evaluation of total flavonoid, total phenolic, and antioxidant activity of etlingera elatior (Jack) R.M.Sm Flower, Fruit, and Leaf. Majalah Obat Tradisional, 27(1), 50. https://doi.org/10.22146/mot.72210

Si, H., & Liu, D. (2014). Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. The Journal of Nutritional Biochemistry, 25(6), 581–591. https://doi.org/10.1016/j.jnutbio.2014.02.001

Soeng, S., Evacuasiany, E., Widowati, W., & Fauziah, N. (2015). Antioxidant and hypoglycemic activities of extract and fractions of Rambutan seeds (Nephelium lappaceum L.). Biomedical Enginering, 1(1), 13–18

Widowati, W., Prahastuti, S., Hidayat, M., Hasianna, S. T., Wahyudianingsih, R., Eltania, T. F., Azizah, A. M., Aviani, J. K., Subangkit, M., Handayani, R. A. S., & Kusuma, H. S. W. (2022). Detam 1 black soybean against cisplatin-induced acute ren failure on rat model via antioxidant, antiinflammatory and antiapoptosis potential. Journal of Traditional and Complementary Medicine, 12(4), 426–435. https://doi.org/10.1016/j.jtcme.2022.01.004

Widowati, W., Tjokropranoto, R., Wahyudianingsih, R., Tih, F., Sadeli, L., Kusuma, H. S. W., Fuad, N. A., Girsang, E., & Agatha, F. A. (2021). Antidiabetic potential Yacon (Smallanthus sonchifolius (Poepp.) H. Rob.) leaf extract via antioxidant activities, inhibition of α-glucosidase, α-amylase, G-6-Pase by in vitro assay. Journal of Reports in Pharmaceutical Sciences, 10(2), 247–255. https://doi.org/10.4103/jrptps.JRPTPS_3_21

Widowati, W., Wargasetia, T. L., Afifah, E., Mozef, T., Kusuma, H. S. W., Nufus, H., Arumwardana, S., Amalia, A., & Rizal, R. (2018). Antioxidant and antidiabetic potential of Curcuma longa and its compounds. Asian Journal of Agriculture and Biology, 6(2), 149–161

World Health Organization. (2019). Classification of diabetes mellitus

Yamashita, Y., Nakamura, A., Nanba, F., Saito, S., Toda, T., Nakagawa, J., & Ashida, H. (2020). Black soybean improves vascular function and blood pressure: a randomized, placebo controlled, crossover trial in humans. Nutrients, 12(9), 2755. https://doi.org/10.3390/nu12092755

Yang, J., Wang, X., Zhang, C., Ma, L., Wei, T., Zhao, Y., & Peng, X. (2021). Comparative study of inhibition mechanisms of structurally different flavonoid compounds on α-glucosidase and synergistic effect with acarbose. Food Chemistry, 347, 129056. https://doi.org/10.1016/j.foodchem.2021.129056

Zhu, J., Chen, C., Zhang, B., & Huang, Q. (2020). The inhibitory effects of flavonoids on α-amylase and α-glucosidase. Critical Reviews in Food Science and Nutrition, 60(4), 695–708. https://doi.org/10.1080/10408398.2018.1548428

Downloads

Published

2024-11-30

Issue

Section

Biology Pharmacy