Cross-resistance to antibiotics of Escherichia coli in the inpatient installation of general regional hospital “X” Bali, Indonesia

Authors

  • I Putu Yudistira Mahaputra Program Studi Sarjana Farmasi Faculty of Pharmacy, Universitas Mahasaraswati Denpasar
  • Dwi Arymbhi Sanjaya Universitas Mahasaraswati Denpasar
  • Herleeyana Meriyani Universitas Mahasaraswati Denpasar
  • Rr Asih Juanita Universitas Mahasaraswati Denpasar
  • Nyoman Budiartha Siada Universitas Mahasaraswati Denpasar
  • Made Gek Adisti Kamalia Program Studi Sarjana Farmasi, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar
  • Ketut Agus Adrianta Departement of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Mahasaraswati Denpasar
  • Lusy Noviani Department of Pharmacy, School of Medicine and Health Sciences Atma Jaya Catholic University of Indonesia

DOI:

https://doi.org/10.12928/pharmaciana.v15i1.29209

Keywords:

Defined Daily Dose, Escherichia coli, gene transfer, selection pressure

Abstract

Escherichia coli (E. coli) is a critical-priority group of MDR bacteria and its spread can occur in hospital inpatient settings. Several studies showed that antibiotics consumption for inpatients can cause E. coli resistance to other antibiotics called cross-resistance. The aim of this study to determine the cross-resistance in E. coli to antibiotics in the inpatient installation of the regional general hospital "X" in Bali, Indonesia by analyzing the relationship between the antibiotic consumption and the percentage of antibiotic resistance of E. coli. This research is an ecological study with the independent variable is the antibiotics consumption defined as defined daily doses/100 bed-days and the dependent variable is the percentage of E. coli resistance during 2017-2020. The correlation between the level of antibiotic consumption and the percentage of E. coli resistance to antibiotics was analyzed using the Pearson correlation tests. The results showed that the consumption of tetracycline had a significant correlation with increased resistance of E. coli to meropenem and piperacillin-tazobactam (r=0.8-1.0; p<0.05). This showed that there is cross-resistance in E. coli. This incident is associated with selective pressure, horizontal and vertical gene transfer in E. coli. The consumption of tetracycline, apart from inducing the production of the tet gene which is the cause of resistance to tetracycline, can also induce the production of resistance genes to broad-spectrum beta-lactam antibiotics such as piperacillin-tazobactam and meropenem.

References

Aggarwal, R., & Ranganathan, P. (2019). Study designs: Part 2 - descriptive studies. Perspectives in Clinical Research, 10(1), 34–36. https://doi.org/10.4103/picr.PICR_154_18

Bell, B. G., Schellevis, F., Stobberingh, E., Goossens, H., & Pringle, M. (2014). A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infectious Diseases, 14(1), 1–25. https://doi.org/https://doi.org/10.1186/1471-2334-14-13

Bengtsson-Palme, J., Kristiansson, E., & Larsson, D. G. J. (2018). Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews, 42(1), fux053.

Bethke, J. H., Ma, H. R., Tsoi, R., Cheng, L., Xiao, M., & You, L. (2022). Vertical and Horizontal Gene Transfer Tradeoffs Direct Plasmid Fitness. Molecular Systems Biology, 19(2), 1–10. https://doi.org/10.15252/msb.202211300

Centers for Disease Control and Prevention. (2024). Antimicrobial Resistant Phenotype Definitions.

Chang, Y. T., Siu, L. K., Wang, J. T., Wu, T. L., Chen, Y. H., Chuang, Y. C., Lin, J. C., & Lu, P. L. (2019). Resistance mechanisms and molecular epidemiology of carbapenem-nonsusceptible Escherichia coli in Taiwan, 2012-2015. Infection and Drug Resistance, 12, 2113–2123. https://doi.org/10.2147/IDR.S208231

Dirga, Khairunnisa, S. M., Akhmad, A. D., Setyawan, I. A., & Pratama, A. (2021). Evaluasi penggunaan antibiotik pada pasien rawat inap di bangsal penyakit dalam RSUD. Dr. H. Abdul Moeloek Provinsi Lampung. Jurnal Kefarmasian Indonesia, 11(1), 65–75. https://doi.org/https://doi.org/10.22 435/jki.v11i1.3570

Edwards, T., Heinz, E., van Aartsen, J., Howard, A., Roberts, P., Corless, C., Fraser, A. J., Williams, C. T., Bulgasim, I., Cuevas, L. E., Parry, C. M., Roberts, A. P., Adams, E. R., Mason, J., & Hubbard, A. T. M. (2022). Piperacillin/Tazobactam-Resistant, cephalosporin-susceptible escherichia coli bloodstream infections are driven by multiple acquisition of resistance across diverse sequence types. Microbial Genomics, 8(4), 1–11. https://doi.org/10.1099/mgen.0.000789

Farida, Y., Trisna, A., & Nur, D. (2017). Studi penggunaan antibiotik pada pasien pneumonia di rumah sakit rujukan daerah Surakarta. JPSCR : Journal of Pharmaceutical Science and Clinical Research, 2, 44–52. https://doi.org/10.20961/jpscr.v2i01.5240

Haaber, J., Penadés, J. R., & Ingmer, H. (2017). Transfer of antibiotic resistance in Staphylococcus aureus. Trends in Microbiology, 25(11), 893–905. https://doi.org/10.1016/j.tim.2017.05.011

Hasegawa, H., Suzuki, E., & Maeda, S. (2018). Horizontal plasmid transfer by transformation in escherichia coli: environmental factors and possible mechanisms. Frontiers in Microbiology, 9, 1–6. https://doi.org/10.3389/fmicb.2018.02365

Huang, J., Lv, C., Li, M., Rahman, T., Chang, Y. F., Guo, X., Song, Z., Zhao, Y., Li, Q., Ni, P., & Zhu, Y. (2024). Carbapenem-Resistant Escherichia coli exhibit diverse Spatiotemporal Epidemiological Characteristics Across the Globe. Communications Biology, 7(1), 1–13. https://doi.org/10.1038/s42003-023-05745-7

Hubbard, A. T. M., Mason, J., Roberts, P., Parry, C. M., Corless, C., van Aartsen, J., Howard, A., Bulgasim, I., Fraser, A. J., Adams, E. R., Roberts, A. P., & Edwards, T. (2020). Piperacillin/Tazobactam Resistance in A Clinical Isolate of Escherichia coli Due to IS26-Mediated Amplification of blaTEM-1B. Nature Communications, 11(1), 1–9. https://doi.org/10.1038/s41467-020-18668-2

Hughes, D., & Andersson, D. I. (2017). Evolutionary trajectories to antibiotic resistance. Annual Review of Microbiology, 71, 579–596. https://doi.org/10.1146/annurev-micro-090816-093813

Jorgensen, S. C. J., & Rybak, M. J. (2018). Meropenem and Vaborbactam: Stepping up the Battle against Carbapenem-resistant Enterobacteriaceae. Pharmacotherapy, 38(4), 444–461. https://doi.org/10.1002/phar.2092

Kementrian Kesehatan Republik Indonesia. (2022). Profil Kesehatan Indonesia 2021. Kementrian Kesehatan Republik Indonesia.

Laborda, P., Sanz-García, F., Ochoa-Sánchez, L. E., Gil-Gil, T., Hernando-Amado, S., & Martínez, J. L. (2022). Wildlife and Antibiotic Resistance. Frontiers in Cellular and Infection Microbiology, 12, 873989. https://doi.org/10.3389/fcimb.2022.873989

Larsson, D. G. J., & Flach, C. F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(5), 257–269. https://doi.org/10.1038/s41579-021-00649-x

Latifah, N., Andayani, T. M., & Ikawati, Z. (2021). Perbandingan efektivitas cefazolin dan ceftriaxone sebagai antibiotik profilaksis bedah ortopedi open reduction internal fixation (ORIF) Fraktur Tertutup. JPSCR: Journal of Pharmaceutical Science and Clinical Research, 3, 307–317. https://doi.org/10.20961/jpscr.v6i3.52630

Lerminiaux, N. A., & Cameron, A. D. S. (2019). Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian Journal of Microbiology, 65, 34–44. https://doi.org/10.1139/cjm-2018-0275

Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial antibiotic resistance: the most critical pathogens. Pathogens, 10(10). https://doi.org/10.3390/pathogens10101310

Mbwasi, R., Mapunjo, S., Wittenauer, R., Valimba, R., Msovela, K., Werth, B. J., Khea, A. M., Nkiligi, E. A., Lusaya, E., Stergachis, A., & Konduri, N. (2020). National Consumption of Antimicrobials in Tanzania: 2017–2019. Frontiers in Pharmacology, 11, 1–9. https://doi.org/10.3389/fphar.2020.585553

Meriyani, H., Sanjaya, D. A., Juanita, R. A., & Siada, N. B. (2023). Kajian Literatur: study design dalam farmakoepidemiologi untuk mengetahui resistensi bakteri terhadap antibiotik. JPSCR: Journal of Pharmaceutical Science and Clinical Research, 8(1), 13–31. https://doi.org/10.20961/jpscr.v8i1.61651

Meriyani, H., Sanjaya, D. A., Sutariani, N. W., Juanita, R. R. A., & Siada, N. B. (2021). Penggunaan dan resistensi antibiotik di instalasi rawat intensif Rumah Sakit Umum Daerah di Bali: Studi ekologikal selama 3 tahun. Jurnal Farmasi Klinik Indonesia, 10(3).

Pérez-Lazo, G., Abarca-Salazar, S., Lovón, R., Rojas, R., Ballena-López, J., Morales-Moreno, A., Flores-Paredes, W., Arenas-Ramírez, B., & Illescas, L. R. (2021). antibiotic consumption and its relationship with bacterial resistance profiles in ESKAPE pathogens in a peruvian hospital. Antibiotics, 10(10).1221. https://doi.org/10.3390/antibiotics10101221

Poirel, L., Madec, J.-Y., Lupo, A., Schink, A.-K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial Resistance in Escherichia coli Sepsis. Microbiology Spectrum American Society for Microbiology, 6(4), 1–27. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017

Prasetya, D., Putri, N. L. N. D. D., Yundari, A. A. I. D. H., Puspawati, N. L. P. D., & Asdiwinata, I. N. (2022). Edukasi pencegahan penyakit infeksi saluran kencing pada pedagang pasar Agung Peninjoan Denpasar. Bhakti Community Journal, 1(2), 68–79. https://doi.org/10.36376/bcj.v1i2.10

Rahmawati, D. P., Herawati, F., & Wardani, S. A. (2019). Evaluasi penggunaan obat di Rumah Sakit Marsudi Waluyo, Kabupaten Malang Tahun 2016. Jurnal Ilmiah Mahasiswa Universitas Surabaya, 7(2), 1604–1617.

Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., Cohen, J., Findlay, D., Gyssens, I., Heure, O. E., Kahlmeter, G., Kruse, H., Laxminarayan, R., Liébana, E., López-Cerero, L., MacGowan, A., Martins, M., Rodríguez-Baño, J., Rolain, J. M., … Vila, J. (2015). The global threat of antimicrobial resistance: science for intervention. new microbes and new infections, 6, 22–29. https://doi.org/10.1016/j.nmni.2015.02.007

Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C., & Millán, Á. S. (2021). Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nature Reviews Microbiology, 19(6), 347–359. https://doi.org/10.1038/s41579-020-00497-1

Rotinsulu, S., Fatimawali, F., & Tallei, T. E. (2019). Transformasi plasmid yang mengandung gen merb pada Bakteri Escherichia coli TOP-10. Pharmacon, 8(2), 290. https://doi.org/10.35799/pha.8.2019.29294

Salleh, M. Z., Nik Zuraina, N. M. N., Hajissa, K., Ilias, M. I., & Deris, Z. Z. (2022). Prevalence of Multidrug-Resistant Diarrheagenic Escherichia coli in Asia: a systematic review and meta-analysis. Antibiotics, 11, 1–21. https://doi.org/10.3390/antibiotics11101333

Sangeda, R. Z., Saburi, H. A., Masatu, F. C., Aiko, B. G., Mboya, E. A., Mkumbwa, S., Bitegeko, A., Mwalwisi, Y. H., Nkiligi, E. A., Chambuso, M., Sillo, H. B., Fimbo, A. M., & Horumpende, P. G. (2021). National antibiotics utilization trends for human use in Tanzania from 2010 to 2016 Inferred from Tanzania medicines and medical devices authority importation data. Antibiotics, 10, 1–15. https://doi.org/10.3390/antibiotics10101249

Sanjaya, D. A., Juanita, R. A., Meriyani, H., Budiartha, N., & Lestari, K. T. (2023). Tren penggunaan antibiotik dan profil resistensi pada kelompok critical priority Bacteria di ICU Rumah Sakit “X” Provinsi Bali (2017-2019 ). Journal of Pharmaceutical Science and Clinical Research, 3, 301–316. https://doi.org/10.20961/jpscr.v8i3.71717

Sedláková, M. H., Urbánek, K., Vojtová, V., Suchánková, H., Imwensi, P., & Kolář, M. (2014). Antibiotic consumption and its influence on the resistance in Enterobacteriaceae. BMC Research Notes, 7(1), 1–10. https://doi.org/10.1186/1756-0500-7-454

Tan, S. Y., Khan, R. A., Khalid, K. E., Chong, C. W., & Bakhtiar, A. (2022). Correlation between antibiotic consumption and the occurrence of multidrug-resistant organisms in a Malaysian tertiary hospital: a 3-year observational study. Scientific Reports, 12(1), 3106 (2022). https://doi.org/10.1038/s41598-022-07142-2

Tao, H., Wang, J., Li, L., Zhang, H. Z., Chen, M. P., & Li, L. (2017). Incidence and antimicrobial Sensitivity profiles of normal conjunctiva bacterial flora in the central area of China: a hospital-based study. Frontiers in Physiology, 8(363), 1–6. https://doi.org/10.3389/fphys.2017.00363

Vikesland, P., Garner, E., Gupta, S., Kang, S., Maile-Moskowitz, A., & Zhu, N. (2019). Differential drivers of antimicrobial resistance across the world. Accounts of Chemical Research, 52(4), 916–924. https://doi.org/10.1021/acs.accounts.8b00643

World Health Organization. (2019). WHO’s List of Medically Important Antimicrobials (6th ed.). World Health Organization.

World Health Organization. (2022). The WHO AWaRe (Access, Watch, Reserve) Antibiotic Book. World Health Organization.

Wushouer, H., Zhou, Y., Zhang, W., Hu, L., Du, K., Yang, Y., Yao, G., Little, P., Zheng, B., Guan, X., & Shi, L. (2023). Inpatient antibacterial use trends and patterns, China, 2013–2021. Bulletin of the World Health Organization, 101(4), 248-261B. https://doi.org/10.2471/BLT.22.288862

Zou, H., Jia, X., Liu, H., Li, S., Wu, X., & Huang, S. (2020). Emergence of NDM-5-Producing Escherichia coli in a Teaching Hospital in Chongqing, China: IncF-Type Plasmids May Contribute to the Prevalence of blaNDM–5. Frontiers in Microbiology, 11, 1–9. https://doi.org/10.3389/fmicb.2020.00334

Downloads

Published

2025-03-21

Issue

Section

Clinical and Community Pharmacy