The redox titration of Fe (II) ions with K2Cr2O7 using a potentiometry method the effect of EDTA and SCN- ligands

Authors

  • Herlina Herlina Institut Kesehatan Medistra Lubuk Pakam
  • Muhammad Razali Universitas Pembinaan Masyarakat Indonesia

DOI:

https://doi.org/10.12928/pharmaciana.v14i3.28638

Keywords:

complexation, EDTA, ligands, redox potential, pH

Abstract

Complexometric titration is often used for determining the metal content, either through direct titration or back titration. This study aimed to investigate redox titration between Mohr salt solutions and potassium dichromate in an acidic atmosphere in the pH range 2. The results showed that the reaction proceeded effectively at pH 2, with Mohr's salt solution acting as titrant. Furthermore, experiments were conducted to compare the effectiveness of EDTA ligands and SCN- ligands in improving the sharpness of the Fe2+/ Cr2O72- redox titration curve at pH 2. Results show that EDTA ligands are more effective than SCN- ligands in improving the sharpness of the titration curve. However, it should be noted that the addition of EDTA ligands can shift the equivalent point volume earlier, so adjustments need to be made in redox titration analysis. Research has also shown that adding excess moles of EDTA to total Fe (II) ions can decrease redox potential in Fe2+/ Cr2O72- systems. These results provide additional insight into the use of EDTA ligands in redox titration analysis and their relevance to redox potential changes in the systems studied.

References

Barrera-Díaz, C. E., Lugo-Lugo, V., & Bilyeu, B. (2012). A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. Journal of Hazardous Materials, 223–224, 1–12. https://doi.org/10.1016/j.jhazmat.2012.04.054

Bashir, S., Banday, S. M., Mustafa, M., & Rizvi, M. A. (2020). Complexation modulated Iron redox systems for waste water treatment: a natural attenuation model. ChemistrySelect, 5(35), 10945–10952. https://doi.org/10.1002/slct.202002241

Bashir, S., Mustafa, M., Safvi, S. W., Farhad, N. A., & Rizvi, M. A. (2018). Iron reduces iron: A spectroelectrochemical insight of ligand effect on iron redox potential. Chiang Mai Journal of Science, 45(2), 1087–1098.

Brownson, D. A. C., & Banks, C. E. (2014). The Handbook of Graphene Electrochemistry | Dale A. C. Brownson | Springer.

Das, S., Mishra, J., Das, S. K., Pandey, S., Rao, D. S., Chakraborty, A., Sudarshan, M., Das, N., & Thatoi, H. (2014). Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere, 96, 112–121. https://doi.org/10.1016/j.chemosphere.2013.08.080

El Jamal, M. M. (2008). Experimental E-pH diagrams of Fe(III)/Fe(II) system in presence of variable concentration of different ligands. Journal of the University of Chemical Technology and Metallurgy, 43(Iii), 129–138.

El Jamal, M. M., & Hammud, H. H. (2007). Quantitative Determination Of Metals Ions Using Fe (III)/ Fe (II) redox titration system with a platinum electrode. Journal of the University of Chemical Technology and Metallurgy, 42(Iii), 97–104.

Gao, Yanjiao, & Liu, R. (2017). Removal of Cr(VI) from groundwater by Fe(0). Applied Water Science, 7(7), 3625–3631. https://doi.org/10.1007/s13201-016-0506-0

Gao, Ying, Wang, H., Xu, R., Wang, Y. nan, Sun, Y., Bian, R., & Li, W. (2022). Remediation of Cr(VI)-contaminated soil by combined chemical reduction and microbial stabilization: The role of biogas solid residue (BSR). Ecotoxicology and Environmental Safety, 231, 113198. https://doi.org/10.1016/j.ecoenv.2022.113198

Kabdaşlı, I., & Tünay, O. (2023). Hexavalent chromium removal from water and wastewaters by electrochemical processes: review. Molecules, 28(5). https://doi.org/10.3390/molecules28052411

Kang, H., Liu, Y., Li, D., & Xu, L. (2022). Study on the removal of iron and manganese from groundwater using modified manganese sand based on response surface methodology. Applied Sciences (Switzerland), 12(22). https://doi.org/10.3390/app122211798

Morgan, B., & Lahav, O. (2007). The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution - basic principles and a simple heuristic description. Chemosphere, 68(11),

Barrera-Díaz, C. E., Lugo-Lugo, V., & Bilyeu, B. (2012). A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. Journal of Hazardous Materials, 223–224, 1–12. https://doi.org/10.1016/j.jhazmat.2012.04.054

Bashir, S., Banday, S. M., Mustafa, M., & Rizvi, M. A. (2020). Complexation modulated Iron redox systems for waste water treatment: a natural attenuation model. ChemistrySelect, 5(35), 10945–10952. https://doi.org/10.1002/slct.202002241

Bashir, S., Mustafa, M., Safvi, S. W., Farhad, N. A., & Rizvi, M. A. (2018). Iron reduces iron: A spectroelectrochemical insight of ligand effect on iron redox potential. Chiang Mai Journal of Science, 45(2), 1087–1098.

Brownson, D. A. C., & Banks, C. E. (2014). The Handbook of Graphene Electrochemistry | Dale A. C. Brownson | Springer.

Das, S., Mishra, J., Das, S. K., Pandey, S., Rao, D. S., Chakraborty, A., Sudarshan, M., Das, N., & Thatoi, H. (2014). Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere, 96, 112–121. https://doi.org/10.1016/j.chemosphere.2013.08.080

El Jamal, M. M. (2008). Experimental E-pH diagrams of Fe(III)/Fe(II) system in presence of variable concentration of different ligands. Journal of the University of Chemical Technology and Metallurgy, 43(Iii), 129–138.

El Jamal, M. M., & Hammud, H. H. (2007). Quantitative Determination Of Metals Ions Using Fe (III)/ Fe (II) redox titration system with a platinum electrode. Journal of the University of Chemical Technology and Metallurgy, 42(Iii), 97–104.

Gao, Yanjiao, & Liu, R. (2017). Removal of Cr(VI) from groundwater by Fe(0). Applied Water Science, 7(7), 3625–3631. https://doi.org/10.1007/s13201-016-0506-0

Gao, Ying, Wang, H., Xu, R., Wang, Y. nan, Sun, Y., Bian, R., & Li, W. (2022). Remediation of Cr(VI)-contaminated soil by combined chemical reduction and microbial stabilization: The role of biogas solid residue (BSR). Ecotoxicology and Environmental Safety, 231, 113198. https://doi.org/10.1016/j.ecoenv.2022.113198

Kabdaşlı, I., & Tünay, O. (2023). Hexavalent chromium removal from water and wastewaters by electrochemical processes: review. Molecules, 28(5). https://doi.org/10.3390/molecules28052411

Kang, H., Liu, Y., Li, D., & Xu, L. (2022). Study on the removal of iron and manganese from groundwater using modified manganese sand based on response surface methodology. Applied Sciences (Switzerland), 12(22). https://doi.org/10.3390/app122211798

Morgan, B., & Lahav, O. (2007). The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution - basic principles and a simple heuristic description. Chemosphere, 68(11), 2080–2084. https://doi.org/10.1016/j.chemosphere.2007.02.015

Najib, F. M., & Hayder, O. I. (2011). Study of stoichiometry of ferric thiocyanate complex for analytical. Iii, 135–155.

Rizvi, M. A., Dangat, Y., Shams, T., & Khan, K. Z. (2016). Complexation Key to a pH Locked Redox Reaction. Journal of Chemical Education, 93(2), 355–361. https://doi.org/10.1021/acs.jchemed.5b00499

Rizvi, M. A., Teshima, N., & Peerzada, G. M. (2013). Utilizing Fe(III)/(II)-EDTA couple for estimation of transition metal ion mixture over platinum electrode. Asian Journal of Chemistry, 25(9), 4776–4778. https://doi.org/10.14233/ajchem.2013.14099

Sukekava, C. F., Downes, J., Filella, M., Vilanova, B., & Laglera, L. M. (2024). Ligand exchange provides new insight into the role of humic substances in the marine iron cycle. Geochimica et Cosmochimica Acta, 366(December 2023), 17–30. https://doi.org/10.1016/j.gca.2023.12.007

Tian, N., Giannakis, S., Oji-Okoro, O. C., Farinelli, G., Garcia-Muñoz, P., & Pulgarin, C. (2024). Photo-Fenton inactivation of MS2 bacteriophage at alkaline pH by Fe salts or nm to μm-sized oxides, and the Janus-faced effects of natural organic matter in surface waters. Catalysis Today, 430(November 2023). https://doi.org/10.1016/j.cattod.2024.114536

Downloads

Published

2024-11-30

Issue

Section

Analytical Pharmacy and Medicinal Chemistry