Enterobacter hormaechei: an endophytic bacterium found in Avocado Peel (Persea americana Mill.) with antioxidant properties

Authors

  • Rustini Rustini Faculty of Pharmacy, Universitas Andalas
  • Khalila Rahmi Rahmi Faculty of Pharmacy, Universitas Andalas
  • Purnawan Pontana Putra Faculty of Pharmacy, Universitas Andalas
  • Regina Andayani Andayani Faculty of Pharmacy, Universitas Andalas
  • Khiky Dwinatrana Department of Pharmacy, University of Dharma Andalas

DOI:

https://doi.org/10.12928/pharmaciana.v14i3.28432

Keywords:

Avocado peel, Endophytic bacteria, Enterobacter hormachei, Antioxidant activity

Abstract

Avocado peels (AVP) are renowned for their potent antioxidant properties, making them highly effective in preventing oxidation and free radical formation. Endophytes, microorganisms residing within plant tissues, have demonstrated the ability to produce novel compounds with remarkable biological activities. These bioactive compounds are sometimes even more potent than those found in their host plants. This study explores the potential of endophytes from avocado peels as rich sources of antioxidant compounds. AVP samples are collected, surface-sterilized, and segmented before being cultured in growth media. The bacteria are then isolated, purified, and subjected to ethyl acetate extraction to evaluate their antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) microassay. Samples demonstrating favorable antioxidant properties undergo molecular identification through 16S rRNA gene sequencing. Four bacterial strains are successfully isolated, with only the APK4 strain exhibiting significant antioxidant activity with an IC50 value of 302.3 μg/mL. Molecular analysis and phylogenetic tree construction reveal that APK4 is closely related to the Enterobacter hormaechei species, with a percent identity value of 99.93%. These findings highlight the potential of active metabolites from endophytic bacteria in AVP extracts as promising lead compounds for the development of novel drugs, nutraceuticals, and cosmetic ingredients.

References

Akan, S. (2021). Phytochemicals in avocado peel and their potential uses. Food and Health, 7(2), 138–149. https://doi.org/10.3153/fh21015

Anjum, N., & Chandra, R. (2015). Endophytic bacteria: optimizaton of isolation procedure from various medicinal plants and their preliminary characterization. Asian Journal of Pharmaceutical and Clinical Research, 8(4), 233–238

Beal, J., Farny, N. G., Haddock-Angelli, T., Selvarajah, V., Baldwin, G. S., Buckley-Taylor, R., Gershater, M., Kiga, D., Marken, J., Sanchania, V., Sison, A., Workman, C. T., Pehlivan, M., Roige, B. B., Aarnio, T., Kivisto, S., Koski, J., Lehtonen, L., Pezzutto, D., … Zhou, J. (2020). Robust estimation of bacterial cell count from optical density. Communications Biology, 3(1). https://doi.org/10.1038/s42003-020-01127-5

Denning, G. M., Iyer, S. S., Reszka, K. J., O’Malley, Y., Rasmussen, G. T., & Britigan, B. E. (2003). Phenazine-1-carboxylic acid, a secondary metabolite of Pseudomonas aeruginosa, alters expression of immunomodulatory proteins by human airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 285(3 29-3). https://doi.org/10.1152/ajplung.00086.2003

Feng, X., Tao, A., & Song, Z. (2019). Extraction of quercetin from Avocado meal and its antioxidant activity. IOP Conference Series: Earth and Environmental Science, 330(4). https://doi.org/10.1088/1755-1315/330/4/042057

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

Martins, E. R., Bueno, M. F. C., Francisco, G. R., Casella, T., de Oliveira Garcia, D., Cerdeira, L. T., Gerber, A. L., de Almeida, L. G. P., Lincopan, N., de Vasconcelos, A. T. R., Nogueira, M. C. L., & Estofolete, C. F. (2020). Genome and plasmid context of two rmtG-carrying Enterobacter hormaechei isolated from urinary tract infections in Brazil. Journal of Global Antimicrobial Resistance, 20, 36–40. https://doi.org/10.1016/j.jgar.2019.06.020

Mohamed, A. A., Ali, S. I., & El-Baz, F. K. (2013). Antioxidant and antibacterial activities of Crude extracts and essential oils of Syzygium cumini leaves. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0060269

O’Hara, C. M., Steigerwalt, A. G., Hill, B. C., Farmer, J. J., Fanning, G. R., & Brenner, D. J. (1989). Enterobacter hormaechei, a new species of the family Enterobacteriaceae formerly known as enteric Group 75. Journal of Clinical Microbiology, 27(9), 2046–2049. https://doi.org/10.1128/jcm.27.9.2046-2049.1989

Photolo, M. M., Mavumengwana, V., Sitole, L., & Tlou, M. G. (2020). Antimicrobial and antioxidant properties of a bacterial endophyte, methylobacterium radiotolerans MAMP 4754, isolated from Combretum erythrophyllum Seeds. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/9483670

Rautiainen, S., Manson, J. E., Lichtenstein, A. H., & Sesso, H. D. (2016). Dietary supplements and disease prevention-a global overview. Nature Reviews Endocrinology, 12(7), 407–420. https://doi.org/10.1038/nrendo.2016.54

Rizwan, M., Faisal, S., Tariq, M. H., Zafar, S., Khan, A., & Ahmad, F. (2023). Enterobacter hormaechei-driven novel biosynthesis of tin oxide nanoparticles and evaluation of their anti-aging, cytotoxic, and enzyme inhibition potential. ACS Omega, 8(30), 27439–27449. https://doi.org/10.1021/acsomega.3c02932

Rustini, R., Aisy, D. R., Putra, P. P., Andayani, R., & Dwinatrana, K. (2023). Antibacterial activity of Akan, S. (2021). Phytochemicals in avocado peel and their potential uses. Food and Health, 7(2), 138–149. https://doi.org/10.3153/fh21015

Anjum, N., & Chandra, R. (2015). Endophytic bacteria: optimizaton of isolation procedure from various medicinal plants and their preliminary characterization. Asian Journal of Pharmaceutical and Clinical Research, 8(4), 233–238

Beal, J., Farny, N. G., Haddock-Angelli, T., Selvarajah, V., Baldwin, G. S., Buckley-Taylor, R., Gershater, M., Kiga, D., Marken, J., Sanchania, V., Sison, A., Workman, C. T., Pehlivan, M., Roige, B. B., Aarnio, T., Kivisto, S., Koski, J., Lehtonen, L., Pezzutto, D., … Zhou, J. (2020). Robust estimation of bacterial cell count from optical density. Communications Biology, 3(1). https://doi.org/10.1038/s42003-020-01127-5

Denning, G. M., Iyer, S. S., Reszka, K. J., O’Malley, Y., Rasmussen, G. T., & Britigan, B. E. (2003). Phenazine-1-carboxylic acid, a secondary metabolite of Pseudomonas aeruginosa, alters expression of immunomodulatory proteins by human airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 285(3 29-3). https://doi.org/10.1152/ajplung.00086.2003

Feng, X., Tao, A., & Song, Z. (2019). Extraction of quercetin from Avocado meal and its antioxidant activity. IOP Conference Series: Earth and Environmental Science, 330(4). https://doi.org/10.1088/1755-1315/330/4/042057

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096

Martins, E. R., Bueno, M. F. C., Francisco, G. R., Casella, T., de Oliveira Garcia, D., Cerdeira, L. T., Gerber, A. L., de Almeida, L. G. P., Lincopan, N., de Vasconcelos, A. T. R., Nogueira, M. C. L., & Estofolete, C. F. (2020). Genome and plasmid context of two rmtG-carrying Enterobacter hormaechei isolated from urinary tract infections in Brazil. Journal of Global Antimicrobial Resistance, 20, 36–40. https://doi.org/10.1016/j.jgar.2019.06.020

Mohamed, A. A., Ali, S. I., & El-Baz, F. K. (2013). Antioxidant and antibacterial activities of Crude extracts and essential oils of Syzygium cumini leaves. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0060269

O’Hara, C. M., Steigerwalt, A. G., Hill, B. C., Farmer, J. J., Fanning, G. R., & Brenner, D. J. (1989). Enterobacter hormaechei, a new species of the family Enterobacteriaceae formerly known as enteric Group 75. Journal of Clinical Microbiology, 27(9), 2046–2049. https://doi.org/10.1128/jcm.27.9.2046-2049.1989

Photolo, M. M., Mavumengwana, V., Sitole, L., & Tlou, M. G. (2020). Antimicrobial and antioxidant properties of a bacterial endophyte, methylobacterium radiotolerans MAMP 4754, isolated from Combretum erythrophyllum Seeds. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/9483670

Rautiainen, S., Manson, J. E., Lichtenstein, A. H., & Sesso, H. D. (2016). Dietary supplements and disease prevention-a global overview. Nature Reviews Endocrinology, 12(7), 407–420. https://doi.org/10.1038/nrendo.2016.54

Rizwan, M., Faisal, S., Tariq, M. H., Zafar, S., Khan, A., & Ahmad, F. (2023). Enterobacter hormaechei-driven novel biosynthesis of tin oxide nanoparticles and evaluation of their anti-aging, cytotoxic, and enzyme inhibition potential. ACS Omega, 8(30), 27439–27449. https://doi.org/10.1021/acsomega.3c02932

Rustini, R., Aisy, D. R., Putra, P. P., Andayani, R., & Dwinatrana, K. (2023). Antibacterial activity of endophytic Bacterial extracts isolated from Pineapple Peel (Ananas comosus L.). Tropical Journal of Natural Product Research, 7(7), 3320–3324. https://doi.org/10.26538/tjnpr/v7i7.8

Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739. https://doi.org/10.1093/molbev/msr121

Wang, Y., Ji, D., Chen, T., Li, B., Zhang, Z., Qin, G., & Tian, S. (2019). Production, signaling, and scavenging mechanisms of reactive oxygen species in fruit–pathogen interactions. International Journal of Molecular Sciences, 20(12). https://doi.org/10.3390/ijms20122994

Yati, S. J., Sumpono, S., & Candra, I. N. (2018). Potential antioxidant activity of secondary metabolites from endophyte bacteria on Moringa oleifera L leaf. Alotrop, 2(1), 82–87. https://doi.org/10.33369/atp.v2i1.4744

Downloads

Published

2024-11-30

Issue

Section

Analytical Pharmacy and Medicinal Chemistry