The effect of HPMC-K15M and guar gum as polymer-coated for sustained-released tablet: disintegration and release kinetics
DOI:
https://doi.org/10.12928/pharmaciana.v14i3.28104Keywords:
dissolution, drug release kinetics, film coating, liquid spray, polymeric coatingAbstract
Polymeric coating films are able to control tablet drug release rate depending on polymer physicochemical properties. Guar gum and HPMC-K15M (GG/HPMC-K15M) can be a coating polymer in sustained-release tablets. This study aims to characterize the disintegration and drug release kinetics on theophylline sustained-release tablets coated with GG/HPMC-K15M. The film coating was made with variations of the GG/HPMC-K15M ratio of 1:3 (F1), 1:4 (F2), and 1:5 (F3). Granules were preformulated regarding LOD, granule size distribution, packing, and flow properties. Film coating was carried out using a liquid spraying method. Coated tablets were tested for quality examination, and the drug release kinetics model was determined based on in-vitro dissolution. Granule pre-formulation result shows that the granules have excellent packing and flow properties with an LOD of 4.59–5.33% and a size of 553.28–627.28 πm. Tablets provided uniform size characteristics with a weight variation of 333.38–339.56 mg (CV 1.32–3.43% and acceptance value 6.53–13.58), hardness of 11.61–18.86 kgf, friability of 0.103–0.186%, disintegration time of 20.69–27.36 min, and drug content of 98.51–98.55%. The theophylline was dissolved by 95.24% (6h in FI), 97.04% (7h in F2), and 99.79% (8h in F3); all formulas followed zero-order kinetic (r2 ~ 1). Suitable quality theophylline tablets GG/HPMC-K15M coating have been successfully produced. Increasing the concentration ratio of HPMC-K15M in the coating solution resulted in a significant increase in disintegration time and a slowing of the drug release rate. The drug release kinetics of all formulations followed the zero-order kinetic model.
References
Agustin, R., & Ratih, H. (2015). Profil disolusi tablet sustained release natrium diklofenak dengan menggunakan matriks metolose 90 SH 4000. Jurnal Sains Farmasi & Klinis, 01(02), 176–183. https://doi.org/https://doi.org/10.29208/jsfk.2015.1.2.33
Ainurofiq, A., Nurcahyo, I. F., & Yulianto, R. (2014). Preparation, characterization and formulation of nanocomposite matrix na-montmorillonite intercalated medium molecular weight chitosan for theophylline sustained release tablet. International Journal of Pharmacy and Pharmaceutical Sciences, 6(11), 131–137.
Akseli, I., Hilden, J., Katz, J. M., Kelly, R. C., Kramer, T. T., Mao, C., Osei-Yeboah, F., & Strong, J. C. (2019). Reproducibility of the measurement of bulk/tapped density of pharmaceutical powders between pharmaceutical laboratories. Journal of Pharmaceutical Sciences, 108, 1081–1084. https://doi.org/10.1016/j.xphs.2018.10.009
Al-Hashimi, N., Begg, N., Alany, R. G., Hassanin, H., & Elshaer, A. (2018). Oral modified release multiple-unit particulate systems: compressed pellets, microparticles and nanoparticles. Pharmaceutics, 10(176), 1–23. https://doi.org/10.3390/pharmaceutics10040176
Avbunudiogba, J. A., Alalor, C. A., & Okolocha, Q. D. (2020). A controlled release theophylline delivery system based on a bilayer floating system. Turkish Journal of Pharmaceutical Sciences, 17(6), 645–652. https://doi.org/10.4274/tjps.galenos.2019.53325
Caldwell, W. B., & Kaushal, A. M. (2017). Multiparticulate technologies for fixed-dose combinations. In A. R. Rajabi-Siahboomi (Ed.), Multiparticulate drug delivery: formulation, processing and manufacturing (pp. 155–168). Springer. https://doi.org/10.1007/978-1-4939-7012-4_7
Depkes RI. (2020). Farmakope Indonesia edisi VI. In Departemen Kesehatan Republik Indonesia.
George, A., Shah, P. A., & Shrivastav, P. S. (2018). Guar gum: Versatile natural polymer for drug delivery applications. European Polymer Journal, 112(October), 722–735. https://doi.org/10.1016/j.eurpolymj.2018.10.042
Hamed, R., Awadallah, A., Sunoqrot, S., Tarawneh, O., Nazzal, S., AlBaraghthi, T., Al Sayyad, J., & Abbas, A. (2016). pH-Dependent Solubility and Dissolution Behavior of Carvedilol—Case Example of a Weakly Basic BCS Class II Drug. AAPS PharmSciTech, 17(2), 418–426. https://doi.org/10.1208/s12249-015-0365-2
Hirun, N. (2022). Drug-polymers composite matrix tablets: effect of hydroxypropyl methylcellulose (HPMC) K-series on porosity, compatibility, and release behavior of the tablet containing a BCS class I drug. Polymers, 14(3406), 1–14. https://doi.org/doi.org/10.3390/polym14163406
Iswandana, R., Lestari, D. A. T., & Sutriyo, S. (2018). Combination of HPMC and PEG 400 as a taste masking agent of film-coated tablets containing Momordica charantia Linn. extract. International Journal of Applied Pharmaceutics, 10(3), 5–9. https://doi.org/10.22159/ijap.2018v10i3.24025
Jana, S., Maiti, S., Jana, S., Sen, K. K., & Nayak, A. K. (2019). Chapter 7: Guar gum in drug delivery applications. In Natural Polysaccharides in Drug Delivery and Biomedical Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-817055-7.00007-8
Kalman, H. (2021). Quantification of mechanisms governing the angle of repose, angle of tilting, and Hausner ratio to estimate the flowability of particulate materials. Powder Technology, 382, 573–593. https://doi.org/10.1016/j.powtec.2021.01.012
Kalman, H., & Portnikov, D. (2020). Analyzing bulk density and void fraction: B. Effect of moisture content and compression pressure. Powder Technology, 381, 285–297. https://doi.org/10.1016/j.powtec.2020.12.019
Kamboj, S., Saini, V., & Bala, S. (2014). Formulation and characterization of drug loaded nonionic surfactant vesicles (Niosomes) for oral bioavailability enhancement. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/959741
Kapoor, D., Maheshwari, R., Verma, K., Sharma, S., Ghode, P., & Tekade, R. K. (2019). Coating technologies in pharmaceutical product development. In Drug Delivery Systems. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814487-9.00014-4
Lee, S. H., Bajracharya, R., Min, J. Y., Han, J., Park, B. J., & Han, H. (2020). Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics, 12(68), 1–20. https://doi.org/10.3390/pharmaceutics12010068
Majumder, T., Biswas, G. R., & Majee, S. B. (2016). Hydroxy propyl methyl cellulose: different aspects in drug delivery. Journal of Pharmacy and Pharmacology, 4(August), 381–385. https://doi.org/10.17265/2328-2150/2016.08.003
Mohamed, F. A., Robert, M., Seton, L., Ford, J. L., Levina, M., & Rajabi-siahboomi, A. R. (2013). The influence of HPMC concentration on release of theophylline or hydrocortisone from extended release mini-tablets. Drug Development and Industrial Pharmacy, 39(March 2012), 1167–1174. https://doi.org/10.3109/03639045.2012.681053
Nining, N., Lestari, P. M., & Indah, P. M. (2020). Efek disintegrasi pati biji cempedak (Artocarpus champeden Lour) terpragelatinasi pada tablet ibuprofen. Majalah Farmasi Dan Farmakologi, 24(3), 77–82. https://doi.org/10.20956/mff.v24i3.10776
Nining, N., Srifiana, Y., & Fadlianty, E. M. (2021). Preparation and characterization of enteric-coated delayed-release microsphere of phytosome loading allicin-rich extract. International Journal of Applied Pharmaceutics, 13(Special Issue 3), 71–75. https://doi.org/10.22159/IJAP.2021.V13S3.15
Palai, S., Chandra, S., Pandey, N., & Singh, R. (2023). Theophylline: A bioactive dimethylxanthine alkaloid. In D. K. Semwal (Ed.), The Essential Guide to Alkaloids (Issue January, pp. 205–217). Nova Science Publishers. https://doi.org/10.52305/KXUM3530
Prusty, A., & Patra, A. (2022). Formulation and evaluation of ciprofloxacin colon targeted tablets by compression coating technique using guar gum and hydroxypropyl methylcellulose. Journal of Research in Pharmacy, 26(6), 1593–1607. https://doi.org/10.29228/jrp.251
Rahmawati, D., Rositama, M. R., Permana, M. I., & Masyitah, N. (2018). Penentuan kadar teofilin dalam sediaan tablet Bronsolvan® dengan metode standar adisi menggunakan spektrofotometer
Agustin, R., & Ratih, H. (2015). Profil disolusi tablet sustained release natrium diklofenak dengan menggunakan matriks metolose 90 SH 4000. Jurnal Sains Farmasi & Klinis, 01(02), 176–183. https://doi.org/https://doi.org/10.29208/jsfk.2015.1.2.33
Ainurofiq, A., Nurcahyo, I. F., & Yulianto, R. (2014). Preparation, characterization and formulation of nanocomposite matrix na-montmorillonite intercalated medium molecular weight chitosan for theophylline sustained release tablet. International Journal of Pharmacy and Pharmaceutical Sciences, 6(11), 131–137.
Akseli, I., Hilden, J., Katz, J. M., Kelly, R. C., Kramer, T. T., Mao, C., Osei-Yeboah, F., & Strong, J. C. (2019). Reproducibility of the measurement of bulk/tapped density of pharmaceutical powders between pharmaceutical laboratories. Journal of Pharmaceutical Sciences, 108, 1081–1084. https://doi.org/10.1016/j.xphs.2018.10.009
Al-Hashimi, N., Begg, N., Alany, R. G., Hassanin, H., & Elshaer, A. (2018). Oral modified release multiple-unit particulate systems: compressed pellets, microparticles and nanoparticles. Pharmaceutics, 10(176), 1–23. https://doi.org/10.3390/pharmaceutics10040176
Avbunudiogba, J. A., Alalor, C. A., & Okolocha, Q. D. (2020). A controlled release theophylline delivery system based on a bilayer floating system. Turkish Journal of Pharmaceutical Sciences, 17(6), 645–652. https://doi.org/10.4274/tjps.galenos.2019.53325
Caldwell, W. B., & Kaushal, A. M. (2017). Multiparticulate technologies for fixed-dose combinations. In A. R. Rajabi-Siahboomi (Ed.), Multiparticulate drug delivery: formulation, processing and manufacturing (pp. 155–168). Springer. https://doi.org/10.1007/978-1-4939-7012-4_7
Depkes RI. (2020). Farmakope Indonesia edisi VI. In Departemen Kesehatan Republik Indonesia.
George, A., Shah, P. A., & Shrivastav, P. S. (2018). Guar gum: Versatile natural polymer for drug delivery applications. European Polymer Journal, 112(October), 722–735. https://doi.org/10.1016/j.eurpolymj.2018.10.042
Hamed, R., Awadallah, A., Sunoqrot, S., Tarawneh, O., Nazzal, S., AlBaraghthi, T., Al Sayyad, J., & Abbas, A. (2016). pH-Dependent Solubility and Dissolution Behavior of Carvedilol—Case Example of a Weakly Basic BCS Class II Drug. AAPS PharmSciTech, 17(2), 418–426. https://doi.org/10.1208/s12249-015-0365-2
Hirun, N. (2022). Drug-polymers composite matrix tablets: effect of hydroxypropyl methylcellulose (HPMC) K-series on porosity, compatibility, and release behavior of the tablet containing a BCS class I drug. Polymers, 14(3406), 1–14. https://doi.org/doi.org/10.3390/polym14163406
Iswandana, R., Lestari, D. A. T., & Sutriyo, S. (2018). Combination of HPMC and PEG 400 as a taste masking agent of film-coated tablets containing Momordica charantia Linn. extract. International Journal of Applied Pharmaceutics, 10(3), 5–9. https://doi.org/10.22159/ijap.2018v10i3.24025
Jana, S., Maiti, S., Jana, S., Sen, K. K., & Nayak, A. K. (2019). Chapter 7: Guar gum in drug delivery applications. In Natural Polysaccharides in Drug Delivery and Biomedical Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-817055-7.00007-8
Kalman, H. (2021). Quantification of mechanisms governing the angle of repose, angle of tilting, and Hausner ratio to estimate the flowability of particulate materials. Powder Technology, 382, 573–593. https://doi.org/10.1016/j.powtec.2021.01.012
Kalman, H., & Portnikov, D. (2020). Analyzing bulk density and void fraction: B. Effect of moisture content and compression pressure. Powder Technology, 381, 285–297. https://doi.org/10.1016/j.powtec.2020.12.019
Kamboj, S., Saini, V., & Bala, S. (2014). Formulation and characterization of drug loaded nonionic surfactant vesicles (Niosomes) for oral bioavailability enhancement. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/959741
Kapoor, D., Maheshwari, R., Verma, K., Sharma, S., Ghode, P., & Tekade, R. K. (2019). Coating technologies in pharmaceutical product development. In Drug Delivery Systems. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814487-9.00014-4
Lee, S. H., Bajracharya, R., Min, J. Y., Han, J., Park, B. J., & Han, H. (2020). Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics, 12(68), 1–20. https://doi.org/10.3390/pharmaceutics12010068
Majumder, T., Biswas, G. R., & Majee, S. B. (2016). Hydroxy propyl methyl cellulose: different aspects in drug delivery. Journal of Pharmacy and Pharmacology, 4(August), 381–385. https://doi.org/10.17265/2328-2150/2016.08.003
Mohamed, F. A., Robert, M., Seton, L., Ford, J. L., Levina, M., & Rajabi-siahboomi, A. R. (2013). The influence of HPMC concentration on release of theophylline or hydrocortisone from extended release mini-tablets. Drug Development and Industrial Pharmacy, 39(March 2012), 1167–1174. https://doi.org/10.3109/03639045.2012.681053
Nining, N., Lestari, P. M., & Indah, P. M. (2020). Efek disintegrasi pati biji cempedak (Artocarpus champeden Lour) terpragelatinasi pada tablet ibuprofen. Majalah Farmasi Dan Farmakologi, 24(3), 77–82. https://doi.org/10.20956/mff.v24i3.10776
Nining, N., Srifiana, Y., & Fadlianty, E. M. (2021). Preparation and characterization of enteric-coated delayed-release microsphere of phytosome loading allicin-rich extract. International Journal of Applied Pharmaceutics, 13(Special Issue 3), 71–75. https://doi.org/10.22159/IJAP.2021.V13S3.15
Palai, S., Chandra, S., Pandey, N., & Singh, R. (2023). Theophylline: A bioactive dimethylxanthine alkaloid. In D. K. Semwal (Ed.), The Essential Guide to Alkaloids (Issue January, pp. 205–217). Nova Science Publishers. https://doi.org/10.52305/KXUM3530
Prusty, A., & Patra, A. (2022). Formulation and evaluation of ciprofloxacin colon targeted tablets by compression coating technique using guar gum and hydroxypropyl methylcellulose. Journal of Research in Pharmacy, 26(6), 1593–1607. https://doi.org/10.29228/jrp.251
Rahmawati, D., Rositama, M. R., Permana, M. I., & Masyitah, N. (2018). Penentuan kadar teofilin dalam sediaan tablet Bronsolvan® dengan metode standar adisi menggunakan spektrofotometer UV-visible.
Rasul, A., Khan, M. I., Rehman, M. U., Abbas, G., Aslam, N., Ahmad, S., Abbas, K., Shah, P. A., Iqbal, M., Subari, A. M. A. Al, Shaheer, T., & Shah, S. (2020). In vitro characterization and release studies of combined nonionic surfactant-based vesicles for the prolonged delivery of an immunosuppressant model drug. International Journal of Nanomedicine, 15, 7937–7949. https://doi.org/10.2147/IJN.S268846
Seo, K., Bajracharya, R., Lee, S. H., & Han, H. (2020). Pharmaceutical application of tablet film coating. Pharmaceutics, 12(853), 1–20. https://doi.org/10.3390/pharmaceutics12090853
Sharma, A., & Kansal, A. (2023). Brief overview on sustained release theophylline (SRT): an older drug for COPD. In Novel Aspects on Pharmaceutical Research Vol. 3 (pp. 109–112). BP International. https://doi.org/10.9734/bpi/napr/v3/3726E
Shukla, A. K., Bishnoi, R. S., Kumar, M., & Jain, C. (2019). Development of natural and modified gum based sustained-release film-coated table ts containing poorly water-soluble drug. Asian Journal of Pharmaceutical and Clinical Research, 12(3), 266–271. https://doi.org/10.22159/ajpcr.2019.v12i3.30296
Singh, P., Shrivastava, A. K., Kumar, S., & Dwivedi, M. D. (2021). Formulation and evaluation of sustained release matrix tablets of aceclofenac. Borneo Journal of Pharmacy, 4(2), 99–109. https://doi.org/10.33084/bjop.v4i2.1854
Solanki, D., & Motiwale, M. (2020). Studies on drug release kinetics and mechanism from sustained release matrix tablets of isoniazid using natural polymer obtained from Dioscorea alata. International Journal of ChemTech Research, 13(03), 166–173. https://doi.org/10.20902/IJCTR.2019.130313
Syukri, Y. (2018). Buku Ajar: Teknologi Sediaan Obat dalam Bentuk Solid. Universitas Islam Indonesia.
Yi, S., Wang, J., Lu, Y., Ma, R., Gao, Q., Liu, S., & Xiong, S. (2019). Novel hot melt extruded matrices of hydroxypropyl cellulose and amorphous felodipine–plasticized hydroxypropyl methylcellulose as controlled release systems. AAPS PharmSciTech, 20(219), 1–14. https://doi.org/10.1208/s12249-019-1435-7
Zaid, A. N. (2020). A comprehensive review on pharmaceutical film coating: past, present, and future. Drug Design, Development and Therapy, 14, 4613–4623. https://doi.org/10.2147/DDDT.S277439
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Nining Nining, Anisa Amalia, Raditya Naufal Riyanto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Pharmaciana agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.