The effect of HPMC-K15M and guar gum as polymer-coated for sustained-released tablet: disintegration and release kinetics

Authors

  • Nining Nining Universitas Muhammadiyah Prof. DR. HAMKA http://orcid.org/0000-0003-1453-9237
  • Anisa Amalia Universitas Muhammadiyah Prof. DR. Hamka
  • Raditya Naufal Riyanto Universitas Muhammadiyah Prof. DR. Hamka

DOI:

https://doi.org/10.12928/pharmaciana.v14i3.28104

Keywords:

dissolution, drug release kinetics, film coating, liquid spray, polymeric coating

Abstract

Polymeric coating films are able to control tablet drug release rate depending on polymer physicochemical properties. Guar gum and HPMC-K15M (GG/HPMC-K15M) can be a coating polymer in sustained-release tablets. This study aims to characterize the disintegration and drug release kinetics on theophylline sustained-release tablets coated with GG/HPMC-K15M. The film coating was made with variations of the GG/HPMC-K15M ratio of 1:3 (F1), 1:4 (F2), and 1:5 (F3). Granules were preformulated regarding LOD, granule size distribution, packing, and flow properties. Film coating was carried out using a liquid spraying method. Coated tablets were tested for quality examination, and the drug release kinetics model was determined based on in-vitro dissolution. Granule pre-formulation result shows that the granules have excellent packing and flow properties with an LOD of 4.59–5.33% and a size of 553.28–627.28 πm. Tablets provided uniform size characteristics with a weight variation of 333.38–339.56 mg (CV 1.32–3.43% and acceptance value 6.53–13.58), hardness of 11.61–18.86 kgf, friability of 0.103–0.186%, disintegration time of 20.69–27.36 min, and drug content of 98.51–98.55%. The theophylline was dissolved by 95.24% (6h in FI), 97.04% (7h in F2), and 99.79% (8h in F3); all formulas followed zero-order kinetic (r2 ~ 1). Suitable quality theophylline tablets GG/HPMC-K15M coating have been successfully produced. Increasing the concentration ratio of HPMC-K15M in the coating solution resulted in a significant increase in disintegration time and a slowing of the drug release rate. The drug release kinetics of all formulations followed the zero-order kinetic model.

References

Agustin, R., & Ratih, H. (2015). Profil disolusi tablet sustained release natrium diklofenak dengan menggunakan matriks metolose 90 SH 4000. Jurnal Sains Farmasi & Klinis, 01(02), 176–183. https://doi.org/https://doi.org/10.29208/jsfk.2015.1.2.33

Ainurofiq, A., Nurcahyo, I. F., & Yulianto, R. (2014). Preparation, characterization and formulation of nanocomposite matrix na-montmorillonite intercalated medium molecular weight chitosan for theophylline sustained release tablet. International Journal of Pharmacy and Pharmaceutical Sciences, 6(11), 131–137.

Akseli, I., Hilden, J., Katz, J. M., Kelly, R. C., Kramer, T. T., Mao, C., Osei-Yeboah, F., & Strong, J. C. (2019). Reproducibility of the measurement of bulk/tapped density of pharmaceutical powders between pharmaceutical laboratories. Journal of Pharmaceutical Sciences, 108, 1081–1084. https://doi.org/10.1016/j.xphs.2018.10.009

Al-Hashimi, N., Begg, N., Alany, R. G., Hassanin, H., & Elshaer, A. (2018). Oral modified release multiple-unit particulate systems: compressed pellets, microparticles and nanoparticles. Pharmaceutics, 10(176), 1–23. https://doi.org/10.3390/pharmaceutics10040176

Avbunudiogba, J. A., Alalor, C. A., & Okolocha, Q. D. (2020). A controlled release theophylline delivery system based on a bilayer floating system. Turkish Journal of Pharmaceutical Sciences, 17(6), 645–652. https://doi.org/10.4274/tjps.galenos.2019.53325

Caldwell, W. B., & Kaushal, A. M. (2017). Multiparticulate technologies for fixed-dose combinations. In A. R. Rajabi-Siahboomi (Ed.), Multiparticulate drug delivery: formulation, processing and manufacturing (pp. 155–168). Springer. https://doi.org/10.1007/978-1-4939-7012-4_7

Depkes RI. (2020). Farmakope Indonesia edisi VI. In Departemen Kesehatan Republik Indonesia.

George, A., Shah, P. A., & Shrivastav, P. S. (2018). Guar gum: Versatile natural polymer for drug delivery applications. European Polymer Journal, 112(October), 722–735. https://doi.org/10.1016/j.eurpolymj.2018.10.042

Hamed, R., Awadallah, A., Sunoqrot, S., Tarawneh, O., Nazzal, S., AlBaraghthi, T., Al Sayyad, J., & Abbas, A. (2016). pH-Dependent Solubility and Dissolution Behavior of Carvedilol—Case Example of a Weakly Basic BCS Class II Drug. AAPS PharmSciTech, 17(2), 418–426. https://doi.org/10.1208/s12249-015-0365-2

Hirun, N. (2022). Drug-polymers composite matrix tablets: effect of hydroxypropyl methylcellulose (HPMC) K-series on porosity, compatibility, and release behavior of the tablet containing a BCS class I drug. Polymers, 14(3406), 1–14. https://doi.org/doi.org/10.3390/polym14163406

Iswandana, R., Lestari, D. A. T., & Sutriyo, S. (2018). Combination of HPMC and PEG 400 as a taste masking agent of film-coated tablets containing Momordica charantia Linn. extract. International Journal of Applied Pharmaceutics, 10(3), 5–9. https://doi.org/10.22159/ijap.2018v10i3.24025

Jana, S., Maiti, S., Jana, S., Sen, K. K., & Nayak, A. K. (2019). Chapter 7: Guar gum in drug delivery applications. In Natural Polysaccharides in Drug Delivery and Biomedical Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-817055-7.00007-8

Kalman, H. (2021). Quantification of mechanisms governing the angle of repose, angle of tilting, and Hausner ratio to estimate the flowability of particulate materials. Powder Technology, 382, 573–593. https://doi.org/10.1016/j.powtec.2021.01.012

Kalman, H., & Portnikov, D. (2020). Analyzing bulk density and void fraction: B. Effect of moisture content and compression pressure. Powder Technology, 381, 285–297. https://doi.org/10.1016/j.powtec.2020.12.019

Kamboj, S., Saini, V., & Bala, S. (2014). Formulation and characterization of drug loaded nonionic surfactant vesicles (Niosomes) for oral bioavailability enhancement. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/959741

Kapoor, D., Maheshwari, R., Verma, K., Sharma, S., Ghode, P., & Tekade, R. K. (2019). Coating technologies in pharmaceutical product development. In Drug Delivery Systems. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814487-9.00014-4

Lee, S. H., Bajracharya, R., Min, J. Y., Han, J., Park, B. J., & Han, H. (2020). Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics, 12(68), 1–20. https://doi.org/10.3390/pharmaceutics12010068

Majumder, T., Biswas, G. R., & Majee, S. B. (2016). Hydroxy propyl methyl cellulose: different aspects in drug delivery. Journal of Pharmacy and Pharmacology, 4(August), 381–385. https://doi.org/10.17265/2328-2150/2016.08.003

Mohamed, F. A., Robert, M., Seton, L., Ford, J. L., Levina, M., & Rajabi-siahboomi, A. R. (2013). The influence of HPMC concentration on release of theophylline or hydrocortisone from extended release mini-tablets. Drug Development and Industrial Pharmacy, 39(March 2012), 1167–1174. https://doi.org/10.3109/03639045.2012.681053

Nining, N., Lestari, P. M., & Indah, P. M. (2020). Efek disintegrasi pati biji cempedak (Artocarpus champeden Lour) terpragelatinasi pada tablet ibuprofen. Majalah Farmasi Dan Farmakologi, 24(3), 77–82. https://doi.org/10.20956/mff.v24i3.10776

Nining, N., Srifiana, Y., & Fadlianty, E. M. (2021). Preparation and characterization of enteric-coated delayed-release microsphere of phytosome loading allicin-rich extract. International Journal of Applied Pharmaceutics, 13(Special Issue 3), 71–75. https://doi.org/10.22159/IJAP.2021.V13S3.15

Palai, S., Chandra, S., Pandey, N., & Singh, R. (2023). Theophylline: A bioactive dimethylxanthine alkaloid. In D. K. Semwal (Ed.), The Essential Guide to Alkaloids (Issue January, pp. 205–217). Nova Science Publishers. https://doi.org/10.52305/KXUM3530

Prusty, A., & Patra, A. (2022). Formulation and evaluation of ciprofloxacin colon targeted tablets by compression coating technique using guar gum and hydroxypropyl methylcellulose. Journal of Research in Pharmacy, 26(6), 1593–1607. https://doi.org/10.29228/jrp.251

Rahmawati, D., Rositama, M. R., Permana, M. I., & Masyitah, N. (2018). Penentuan kadar teofilin dalam sediaan tablet Bronsolvan® dengan metode standar adisi menggunakan spektrofotometer

Agustin, R., & Ratih, H. (2015). Profil disolusi tablet sustained release natrium diklofenak dengan menggunakan matriks metolose 90 SH 4000. Jurnal Sains Farmasi & Klinis, 01(02), 176–183. https://doi.org/https://doi.org/10.29208/jsfk.2015.1.2.33

Ainurofiq, A., Nurcahyo, I. F., & Yulianto, R. (2014). Preparation, characterization and formulation of nanocomposite matrix na-montmorillonite intercalated medium molecular weight chitosan for theophylline sustained release tablet. International Journal of Pharmacy and Pharmaceutical Sciences, 6(11), 131–137.

Akseli, I., Hilden, J., Katz, J. M., Kelly, R. C., Kramer, T. T., Mao, C., Osei-Yeboah, F., & Strong, J. C. (2019). Reproducibility of the measurement of bulk/tapped density of pharmaceutical powders between pharmaceutical laboratories. Journal of Pharmaceutical Sciences, 108, 1081–1084. https://doi.org/10.1016/j.xphs.2018.10.009

Al-Hashimi, N., Begg, N., Alany, R. G., Hassanin, H., & Elshaer, A. (2018). Oral modified release multiple-unit particulate systems: compressed pellets, microparticles and nanoparticles. Pharmaceutics, 10(176), 1–23. https://doi.org/10.3390/pharmaceutics10040176

Avbunudiogba, J. A., Alalor, C. A., & Okolocha, Q. D. (2020). A controlled release theophylline delivery system based on a bilayer floating system. Turkish Journal of Pharmaceutical Sciences, 17(6), 645–652. https://doi.org/10.4274/tjps.galenos.2019.53325

Caldwell, W. B., & Kaushal, A. M. (2017). Multiparticulate technologies for fixed-dose combinations. In A. R. Rajabi-Siahboomi (Ed.), Multiparticulate drug delivery: formulation, processing and manufacturing (pp. 155–168). Springer. https://doi.org/10.1007/978-1-4939-7012-4_7

Depkes RI. (2020). Farmakope Indonesia edisi VI. In Departemen Kesehatan Republik Indonesia.

George, A., Shah, P. A., & Shrivastav, P. S. (2018). Guar gum: Versatile natural polymer for drug delivery applications. European Polymer Journal, 112(October), 722–735. https://doi.org/10.1016/j.eurpolymj.2018.10.042

Hamed, R., Awadallah, A., Sunoqrot, S., Tarawneh, O., Nazzal, S., AlBaraghthi, T., Al Sayyad, J., & Abbas, A. (2016). pH-Dependent Solubility and Dissolution Behavior of Carvedilol—Case Example of a Weakly Basic BCS Class II Drug. AAPS PharmSciTech, 17(2), 418–426. https://doi.org/10.1208/s12249-015-0365-2

Hirun, N. (2022). Drug-polymers composite matrix tablets: effect of hydroxypropyl methylcellulose (HPMC) K-series on porosity, compatibility, and release behavior of the tablet containing a BCS class I drug. Polymers, 14(3406), 1–14. https://doi.org/doi.org/10.3390/polym14163406

Iswandana, R., Lestari, D. A. T., & Sutriyo, S. (2018). Combination of HPMC and PEG 400 as a taste masking agent of film-coated tablets containing Momordica charantia Linn. extract. International Journal of Applied Pharmaceutics, 10(3), 5–9. https://doi.org/10.22159/ijap.2018v10i3.24025

Jana, S., Maiti, S., Jana, S., Sen, K. K., & Nayak, A. K. (2019). Chapter 7: Guar gum in drug delivery applications. In Natural Polysaccharides in Drug Delivery and Biomedical Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-817055-7.00007-8

Kalman, H. (2021). Quantification of mechanisms governing the angle of repose, angle of tilting, and Hausner ratio to estimate the flowability of particulate materials. Powder Technology, 382, 573–593. https://doi.org/10.1016/j.powtec.2021.01.012

Kalman, H., & Portnikov, D. (2020). Analyzing bulk density and void fraction: B. Effect of moisture content and compression pressure. Powder Technology, 381, 285–297. https://doi.org/10.1016/j.powtec.2020.12.019

Kamboj, S., Saini, V., & Bala, S. (2014). Formulation and characterization of drug loaded nonionic surfactant vesicles (Niosomes) for oral bioavailability enhancement. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/959741

Kapoor, D., Maheshwari, R., Verma, K., Sharma, S., Ghode, P., & Tekade, R. K. (2019). Coating technologies in pharmaceutical product development. In Drug Delivery Systems. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814487-9.00014-4

Lee, S. H., Bajracharya, R., Min, J. Y., Han, J., Park, B. J., & Han, H. (2020). Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics, 12(68), 1–20. https://doi.org/10.3390/pharmaceutics12010068

Majumder, T., Biswas, G. R., & Majee, S. B. (2016). Hydroxy propyl methyl cellulose: different aspects in drug delivery. Journal of Pharmacy and Pharmacology, 4(August), 381–385. https://doi.org/10.17265/2328-2150/2016.08.003

Mohamed, F. A., Robert, M., Seton, L., Ford, J. L., Levina, M., & Rajabi-siahboomi, A. R. (2013). The influence of HPMC concentration on release of theophylline or hydrocortisone from extended release mini-tablets. Drug Development and Industrial Pharmacy, 39(March 2012), 1167–1174. https://doi.org/10.3109/03639045.2012.681053

Nining, N., Lestari, P. M., & Indah, P. M. (2020). Efek disintegrasi pati biji cempedak (Artocarpus champeden Lour) terpragelatinasi pada tablet ibuprofen. Majalah Farmasi Dan Farmakologi, 24(3), 77–82. https://doi.org/10.20956/mff.v24i3.10776

Nining, N., Srifiana, Y., & Fadlianty, E. M. (2021). Preparation and characterization of enteric-coated delayed-release microsphere of phytosome loading allicin-rich extract. International Journal of Applied Pharmaceutics, 13(Special Issue 3), 71–75. https://doi.org/10.22159/IJAP.2021.V13S3.15

Palai, S., Chandra, S., Pandey, N., & Singh, R. (2023). Theophylline: A bioactive dimethylxanthine alkaloid. In D. K. Semwal (Ed.), The Essential Guide to Alkaloids (Issue January, pp. 205–217). Nova Science Publishers. https://doi.org/10.52305/KXUM3530

Prusty, A., & Patra, A. (2022). Formulation and evaluation of ciprofloxacin colon targeted tablets by compression coating technique using guar gum and hydroxypropyl methylcellulose. Journal of Research in Pharmacy, 26(6), 1593–1607. https://doi.org/10.29228/jrp.251

Rahmawati, D., Rositama, M. R., Permana, M. I., & Masyitah, N. (2018). Penentuan kadar teofilin dalam sediaan tablet Bronsolvan® dengan metode standar adisi menggunakan spektrofotometer UV-visible.

Rasul, A., Khan, M. I., Rehman, M. U., Abbas, G., Aslam, N., Ahmad, S., Abbas, K., Shah, P. A., Iqbal, M., Subari, A. M. A. Al, Shaheer, T., & Shah, S. (2020). In vitro characterization and release studies of combined nonionic surfactant-based vesicles for the prolonged delivery of an immunosuppressant model drug. International Journal of Nanomedicine, 15, 7937–7949. https://doi.org/10.2147/IJN.S268846

Seo, K., Bajracharya, R., Lee, S. H., & Han, H. (2020). Pharmaceutical application of tablet film coating. Pharmaceutics, 12(853), 1–20. https://doi.org/10.3390/pharmaceutics12090853

Sharma, A., & Kansal, A. (2023). Brief overview on sustained release theophylline (SRT): an older drug for COPD. In Novel Aspects on Pharmaceutical Research Vol. 3 (pp. 109–112). BP International. https://doi.org/10.9734/bpi/napr/v3/3726E

Shukla, A. K., Bishnoi, R. S., Kumar, M., & Jain, C. (2019). Development of natural and modified gum based sustained-release film-coated table ts containing poorly water-soluble drug. Asian Journal of Pharmaceutical and Clinical Research, 12(3), 266–271. https://doi.org/10.22159/ajpcr.2019.v12i3.30296

Singh, P., Shrivastava, A. K., Kumar, S., & Dwivedi, M. D. (2021). Formulation and evaluation of sustained release matrix tablets of aceclofenac. Borneo Journal of Pharmacy, 4(2), 99–109. https://doi.org/10.33084/bjop.v4i2.1854

Solanki, D., & Motiwale, M. (2020). Studies on drug release kinetics and mechanism from sustained release matrix tablets of isoniazid using natural polymer obtained from Dioscorea alata. International Journal of ChemTech Research, 13(03), 166–173. https://doi.org/10.20902/IJCTR.2019.130313

Syukri, Y. (2018). Buku Ajar: Teknologi Sediaan Obat dalam Bentuk Solid. Universitas Islam Indonesia.

Yi, S., Wang, J., Lu, Y., Ma, R., Gao, Q., Liu, S., & Xiong, S. (2019). Novel hot melt extruded matrices of hydroxypropyl cellulose and amorphous felodipine–plasticized hydroxypropyl methylcellulose as controlled release systems. AAPS PharmSciTech, 20(219), 1–14. https://doi.org/10.1208/s12249-019-1435-7

Zaid, A. N. (2020). A comprehensive review on pharmaceutical film coating: past, present, and future. Drug Design, Development and Therapy, 14, 4613–4623. https://doi.org/10.2147/DDDT.S277439

Downloads

Published

2024-11-30

Issue

Section

Pharmaceutics and Pharmaceutical Technology