Impact of Black Garlic extract on cardio-renal protection in hypertensive animal models

Authors

  • Patonah Hasimun Bhakti Kencana University, Bandung, Indonesia
  • Hendra Mahakam Putra Bhakti Kencana University, Bandung, Indonesia
  • Fitriani Choerunnisa Faculty of Pharmacy, Bhakti Kencana University, Bandung

DOI:

https://doi.org/10.12928/pharmaciana.v15i1.24513

Keywords:

Arterial stiffness, arterial stiffness, Black garlic, hypertension, Cardio-renal protection,

Abstract

A strong link exists between arterial stiffening and cardiovascular conditions, particularly hypertension. Hypertension, a significant contributor to mortality rates, particularly affects elderly populations. The processed form of Allium sativum, known as black garlic, is renowned for its medicinal properties, including its ability to lower blood pressure. This study examined the blood pressure-lowering effects of black garlic extract, employing male Wistar rats aged two to three months.The experiment involved six distinct rat groups, each comprising of four animals. The two groups served as controls, whereas the remaining four underwent different treatments. Captopril was administered to one group at a dose of 2.5 mg/kg, whilst the remaining three groups were given black garlic extract as BG50, BG100, and BG200. All groups, with the exception of the control normal, underwent a 28-day induction protocol that included 25% fructose in drinking water, cholesterol (200 mg/kg), and propylthiouracil (12.5 mg/kg). The test substances were administered starting on day 14 concurrently with the induction phase. The evaluated parameters included blood pressure, arterial stiffness, nitric oxide (NO) levels, and renal histopathology. Black garlic extract significantly lowered blood pressure, enhanced arterial elasticity, and increased NO levels (p < 0.05) compared with the controls. Renal histopathological analysis revealed protective effects, suggesting prevention of kidney damage. These findings suggest that black garlic may have cardiorenal protective effects and could be useful for managing hypertension and arterial stiffness.

Author Biographies

Patonah Hasimun, Bhakti Kencana University, Bandung, Indonesia

Pharmacology Research Group

Hendra Mahakam Putra, Bhakti Kencana University, Bandung, Indonesia

Pharmacology Research Group

References

Chidinma, O. (2019). Therapeutic effects of garlic: a review. Scientific Journal of Biology & Life Sciences, 1(1),1-5. https://doi.org/10.33552/SJBLS.2019.01.000502

Czompa, A., Szoke, K., Prokisch, J., Gyongyosi, A., Bak, I., Balla, G., Tosaki, A., & Lekli, I. (2018). Aged (Black) versus raw garlic against ischemia/reperfusion-induced cardiac complications. International Journal of Molecular Sciences, 19(4), 1017. https://doi.org/10.3390/ijms19041017

De Bruyne, T., Steenput, B., Roth, L., De Meyer, G. R. Y., Santos, C. N. dos, Valentová, K., Dambrova, M., & Hermans, N. (2019). Dietary polyphenols targeting arterial stiffness: interplay of contributing mechanisms and gut microbiome-related metabolism. Nutrients, 11(3), 578. https://doi.org/10.3390/nu11030578

Dilaveris, P., Gialafos, E., Pantazis, A., Synetos, A., Triposkiadis, F., & Gialafos, J. (2001). The spatial QRS-T angle as a marker of ventricular repolarisation in hypertension. Journal of Human Hypertension, 15(1), 63–70. https://doi.org/10.1038/sj.jhh.1001129

Feigin, V. L., Krishnamurthi, R. V., Parmar, P., Norrving, B., Mensah, G. A., Bennett, D. A., Barker-Collo, S., Moran, A. E., Sacco, R. L., Truelsen, T., Davis, S., Pandian, J. D., Naghavi, M., Forouzanfar, M. H., Nguyen, G., Johnson, C. O., Vos, T., Meretoja, A., Murray, C. J. L., & Roth, G. A. (2015). Update on the global burden of ischemic and hemorrhagic Stroke in 1990-2013: the GBD 2013 study. Neuroepidemiology, 45(3), 161–176. https://doi.org/10.1159/000441085

Garmana, A. N., Sukandar, E. Y., & Fidrianny, I. (2018). Antihypertension study of anredera cordifolia (ten). V. Steenis extract and its fractions in rats through dexamethasone induction and nitric oxide release. Asian Journal of Pharmaceutical and Clinical Research, 11(1), 278. https://doi.org/10.22159/ajpcr.2017.v11i1.22312

Grassi, G. (2020). Impact of heart rate on arterial stiffness: virtual vs. real assessment. Journal of Hypertension, 38(12), 2382–2383. https://doi.org/10.1097/HJH.0000000000002603

Hasimun, P., Mulyani, Y., Rehulina, E., & Zakaria, H. (2020). Impact of Black Garlic on biomarkers of arterial stiffness and frontal QRS-T angle on hypertensive animal nodel. Journal of Young Pharmacists, 12(4), 338–342. https://doi.org/10.5530/jyp.2020.12.88

Ivanovic, B., & Tadic, M. (2015). Hypercholesterolemia and Hypertension: two sides of the same coin. American Journal of Cardiovascular Drugs, 15(6), 403–414. https://doi.org/10.1007/s40256-015-0128-1

James, P. A., Oparil, S., Carter, B. L., Cushman, W. C., Dennison-Himmelfarb, C., Handler, J., Lackland, D. T., LeFevre, M. L., MacKenzie, T. D., Ogedegbe, O., Smith, S. C., Svetkey, L. P., Taler, S. J., Townsend, R. R., Wright, J. T., Narva, A. S., & Ortiz, E. (2014). 2014 evidence-based guideline for the management of high blood pressure in adults. JAMA, 311(5), 507. https://doi.org/10.1001/jama.2013.284427

Jaroszyński, A., Furmaga, J., Zapolski, T., Zaborowski, T., Rudzki, S., & Dąbrowski, W. (2019). The improvement of QRS-T angle as a manifestation of reverse electrical remodeling following renal transplantation in end-stage kidney disease patients on haemodialysis. BMC Nephrology, 20(1), 441. https://doi.org/10.1186/s12882-019-1624-3

Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J. (2005). Global burden of hypertension: analysis of worldwide data. The Lancet, 365(9455), 217–223. https://doi.org/10.1016/S0140-6736(05)17741-1

Kimura, S., Tung, Y.-C., Pan, M.-H., Su, N.-W., Lai, Y.-J., & Cheng, K.-C. (2017). Black garlic: a critical review of its production, bioactivity, and application. Journal of Food and Drug Analysis, 25(1), 62–70. https://doi.org/10.1016/j.jfda.2016.11.003

Kundu, R., Biswas, S., & Das, M. (2017). Mean arterial pressure classification: a better tool for statistical interpretation of blood pressure related risk covariates. Cardiology and Angiology: An International Journal, 6(1), 1–7. https://doi.org/10.9734/CA/2017/30255

Lee, T. W., Bae, E., Kim, J. H., Jang, H. N., Cho, H. S., Chang, S.-H., & Park, D. J. (2019). The aqueous extract of aged black garlic ameliorates colistin-induced acute kidney injury in rats. Renal Failure, 41(1), 24–33. https://doi.org/10.1080/0886022X.2018.1561375

Li, Y.-H., Ren, X.-J., Han, Z.-H., Wang, Y.-L., Wang, Y., Zhang, J.-R., & Chen, F. (2013). Value of the frontal planar QRS-T angle on cardiac dysfunction in patients with old myocardial infarction. International Journal of Clinical and Experimental Medicine, 6(8), 688–692.

Miao, Y., Chen, J., Zhou, G., Xu, X., Zhang, Q., & Wang, I. (2014). The antihypertensive effect of black garlic (Allium Sativum) in spontaneously hypertensive rats via Scavening of free radicals. Research in Health and Nutrition (RHN), 2(1), 5–12.

Muniz, L. B., Alves-Santos, A. M., Camargo, F., Martins, D. B., Celes, M. R. N., & Naves, M. M. V. (2019). High-lard and high-cholesterol diet, but not high-lard diet, leads to metabolic disorders in a modified dyslipidemia model. Arquivos Brasileiros de Cardiologia. https://doi.org/10.5935/abc.20190149

Oehler, A., Feldman, T., Henrikson, C. A., & Tereshchenko, L. G. (2014). QRS‐T angle: a review. Annals of Noninvasive Electrocardiology, 19(6), 534–542. https://doi.org/10.1111/anec.12206

Qurbany, Z. T. (2015). The benefits of Garlic (Allium sativum) as antihypertension. Journal Majority, 4, 116–121.

Ried, K., & Fakler, P. (2014). Potential of garlic (Allium sativum) in lowering high blood pressure: mechanisms of action and clinical relevance. Integrated Blood Pressure Control, 71. https://doi.org/10.2147/IBPC.S51434

Saleh, R., Merghani, B., & Awadin, W. (2017). Effect of high fructose administration on histopathology of kidney, heart and aorta of rats. Journal of Advanced Veterinary and Animal Research, 4(1), 1. Salehhttps://doi.org/10.5455/javar.2017.d193

Sánchez-Lozada, L. G., Tapia, E., Jiménez, A., Bautista, P., Cristóbal, M., Nepomuceno, T., Soto, V., Ávila-Casado, C., Nakagawa, T., Johnson, R. J., Herrera-Acosta, J., & Franco, M. (2007). Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. American Journal of Physiology-Renal Physiology, 292(1), F423–F429. https://doi.org/10.1152/ajprenal.00124.2006

Tousoulis, D., Kampoli, A.-M., Tentolouris Nikolaos Papageorgiou, C., & Stefanadis, C. (2012). The role of nitric oxide on endothelial function. Current Vascular Pharmacology, 10(1), 4–18. https://doi.org/10.2174/157016112798829760

Tsao, C. W., & Vasan, R. S. (2015). Cohort profile: the framingham heart study (FHS): overview of milestones in cardiovascular epidemiology. International Journal of Epidemiology, 44(6), 1800–1813. https://doi.org/10.1093/ije/dyv337

Vasdev, S., Longerich, L., & Gill, V. (2004). Prevention of fructose-induced hypertension by dietary vitamins. Clinical Biochemistry, 37(1), 1–9. https://doi.org/10.1016/j.clinbiochem.2003.09.003

Downloads

Published

2025-03-21

Issue

Section

Pharmacology