Publication trend of TMPRSS2 as SARS-CoV-2 receptor during the COVID-19 pandemic
DOI:
https://doi.org/10.12928/pharmaciana.v13i1.24052Keywords:
bibliometrics, COVID-19, SARS-CoV-2, TMPRSS2Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has not yet been fully under public health control, which is still currently impacting a large number of people worldwide in 2023. Since the pandemic emerged, the growing number of publications related to TMPRSS2 as a SARS-CoV-2 receptor worldwide has increased rapidly with various findings and qualities. It is important to determine the trend of TMPRSS2 publication as no such studies currently exist that represent the publication trend related to this critical field of study. Here, we employed a bibliometric-based approach to evaluate the research trends of TMPRSS2 mechanistically as the SARS-CoV-2 receptor. We identified 1012 research documents published between 2020 and 2022 for this study. The most common document category was "Research Article" (646 articles, 63.84%) followed by "Review Article" (261 articles, 25.79%), and letters to editors (57 articles, 5.63%). Germany was the most cited country with a total of citations (9400 citations), followed by the USA (6409 citations) and China (1788 citations), respectively. In conclusion, given the impact of COVID-19, this study indicated TMPRSS2 as a SARS-CoV-2 receptor as a timely and highly relevant research topic.
References
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. doi:https://doi.org/10.1016/j.joi.2017.08.007
Brandt, J. S., Hadaya, O., Schuster, M., Rosen, T., Sauer, M. V., & Ananth, C. V. (2019). A Bibliometric Analysis of Top-Cited Journal Articles in Obstetrics and Gynecology. JAMA Netw Open, 2(12), e1918007. doi:10.1001/jamanetworkopen.2019.18007
Callaham, M., Wears, R. L., & Weber, E. (2002). Journal prestige, publication bias, and other characteristics associated with citation of published studies in peer-reviewed journals. Jama, 287(21), 2847-2850. doi:10.1001/jama.287.21.2847
Cantuti-Castelvetri, L., Ojha, R., Pedro, L. D., Djannatian, M., Franz, J., Kuivanen, S., . . . Simons, M. (2020). Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 370(6518), 856-860. doi:10.1126/science.abd2985
Chan, J. F., Yuan, S., Kok, K. H., To, K. K., Chu, H., Yang, J., . . . Yuen, K. Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 395(10223), 514-523. doi:10.1016/s0140-6736(20)30154-9
Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. The FASEB Journal, 22(2), 338-342. doi:https://doi.org/10.1096/fj.07-9492LSF
Glowacka, I., Bertram, S., Müller, M. A., Allen, P., Soilleux, E., Pfefferle, S., . . . Pöhlmann, S. (2011). Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol, 85(9), 4122-4134. doi:10.1128/jvi.02232-10
Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569. doi:10.1073/pnas.0507655102
Hoffmann, M., Kleine-Weber, H., & Pöhlmann, S. (2020). A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell, 78(4), 779-784.e775. doi:10.1016/j.molcel.2020.04.022
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., . . . Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280.e278. doi:https://doi.org/10.1016/j.cell.2020.02.052
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., . . . Pohlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. doi:10.1016/j.cell.2020.02.052
Hou, Y. J., Okuda, K., Edwards, C. E., Martinez, D. R., Asakura, T., Dinnon, K. H., 3rd, . . . Baric, R. S. (2020). SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell, 182(2), 429-446.e414. doi:10.1016/j.cell.2020.05.042
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., . . . Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497-506. doi:10.1016/s0140-6736(20)30183-5
Jones, A. W. (2016). Forensic Journals: Bibliometrics and Journal Impact Factors. In J. Payne-James & R. W. Byard (Eds.), Encyclopedia of Forensic and Legal Medicine (Second Edition) (pp. 528-538). Oxford: Elsevier.
Leng, Z., Zhu, R., Hou, W., Feng, Y., Yang, Y., Han, Q., . . . Zhao, R. C. (2020). Transplantation of ACE2(-) Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis, 11(2), 216-228. doi:10.14336/ad.2020.0228
Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., . . . Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450-454. doi:10.1038/nature02145
Liu, P. P., Blet, A., Smyth, D., & Li, H. (2020). The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation, 142(1), 68-78. doi:10.1161/circulationaha.120.047549
Lukassen, S., Chua, R. L., Trefzer, T., Kahn, N. C., Schneider, M. A., Muley, T., . . . Eils, R. (2020). SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. Embo j, 39(10), e105114. doi:10.15252/embj.20105114
Malekpour, M.-R., Abbasi-Kangevari, M., Azadnajafabad, S., Ghamari, S.-H., Rezaei, N., Rezazadeh-Khadem, S., . . . Farzadfar, F. (2021). How the scientific community responded to the COVID-19 pandemic: A subject-level time-trend bibliometric analysis. PLOS ONE, 16(9), e0258064. doi:10.1371/journal.pone.0258064
Organization, W. H. (2020, 19 March 2020). Naming the coronavirus disease (COVID-19) and the virus that causes it. Retrieved from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
Rahman, M., & Fukui, T. (2003). Biomedical research productivity: factors across the countries. Int J Technol Assess Health Care, 19(1), 249-252. doi:10.1017/s0266462303000229
Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., . . . Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221-224. doi:10.1038/s41586-020-2179-y
Smith, T. R. F., Patel, A., Ramos, S., Elwood, D., Zhu, X., Yan, J., . . . Broderick, K. E. (2020). Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun, 11(1), 2601. doi:10.1038/s41467-020-16505-0
Sungnak, W., Huang, N., Bécavin, C., Berg, M., Queen, R., Litvinukova, M., . . . Network, H. C. A. L. B. (2020). SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, 26(5), 681-687. doi:10.1038/s41591-020-0868-6
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. doi:10.1007/s11192-009-0146-3
Wordometers. (2022). COVID-19 CORONAVIRUS PANDEMIC. Retrieved from https://www.worldometers.info/coronavirus/
Zang, R., Gomez Castro, M. F., McCune, B. T., Zeng, Q., Rothlauf, P. W., Sonnek, N. M., . . . Ding, S. (2020). TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol, 5(47). doi:10.1126/sciimmunol.abc3582
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., . . . Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. 382(8), 727-733. doi:10.1056/NEJMoa2001017
Ziegler, C. G. K., Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., Tzouanas, C. N., . . . Ordovas-Montanes, J. (2020). SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 181(5), 1016-1035.e1019. doi:10.1016/j.cell.2020.04.035
Downloads
Published
Issue
Section
License
Authors who publish with Pharmaciana agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.