Free fatty acids regulating action of Capparis decidua fruit on dyslipidemia in rats

Authors

  • Avijit Saha Associate Professor in Biochemistry & Nodal Officer in Charge Multidisciplinary Research Unit Department of Biochemistry R.G. Kar Medical College Kolkata 700004, India ORCID iD: https://orcid.org/0000-0001-7166-6086
  • Sangeeta Ghosh Assistant Professor, Department of Microbiology R.G. Kar Medical College Kolkata 700004, India
  • Alok K. Hazra Research Scientist IRDM Faculty Centre R.K.M. Vivekananda Research Institute, Kolkata700103, India
  • Sandip Ghosh Principal R.G. Kar Medical College Kolkata 700004, India
  • Tapas Kumar Sur Research Scientist II Multidisciplinary Research Unit Department of Biochemistry R.G. Kar Medical College Kolkata 700004, India ORCID iD: https://orcid.org/0000-0003-0835-2564 drtapaskumarsur@gmail.com Cell: 8017575428

DOI:

https://doi.org/10.12928/pharmaciana.v12i2.23518

Keywords:

obesity, dyslipidemia, FFA, PUFA, GC, Capparis decidua

Abstract

Capparis decidua belongs to family Capparidaceae in wastelands of India. The study aim was to determine the role of C. decidua fruits on the free fatty acids (FFA) profile in fat-rich diet (FRD) dyslipidemic rats. The methanolic extract of edible fruit of C. decidua (CD) was given orally to obese dyslipidemic rats at the dose of 125 mg/kg and 250 mg/kg for consecutive 28 days. CD treatment in FRD rats significantly restricts the body weight gains. Blood lipid profile was altered dose dependently and significantly after 4-week treatment with CD to FRD. rats. It significantly (p<0.05) enhanced serum FFA especially, g-linolinate, a-linolinate, arachidonate, ecosapentaenoate, docosapentaenoate and docosahexaenoate. Moreover, w3-PUFA content was also enhanced (50.3% and 78.8%) in the serum of CD treated animals, whereas MUFA was lowered (31.1% and 40%). Therefore, Capparis decidua fruit has a promising role on dyslipidemia and obesity and has the capabilities to regulate beneficial free fatty acids. 

References

Ali, S., Kumar, S., Saxena, S.N., Sharma, R., Singh, P.K., Singh, G. (2014). Assessing biochemical and molecular diversity in Ker (Capparis decidua): A multipurpose shrub of Thar Desert. Int J Seed Spices, 4, 53-61.

Bhupathiraju, S.N., Hu, F.B. (2016). Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res, 118, 1723-1735. doi: 10.1161/CIRCRESAHA.115.306825

Boden, G. (2008). Obesity and free fatty acids. Endocrinol Metab Clin North Am, 37, 635-46. doi: 10.1016/j.ecl.2008.06.007.

Boden, G., She, P., Mozzoli, M. et al. (2005). Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-κB pathway in rat liver. Diabetes, 54, 3458- 3465.

Borengasser, S.J., Rector, R.S., Uptergrove, G.M., Morris, E.M., Perfield, J.W., Booth, F.W. et al. (2012). Exercise and omega-3 polyunsaturated fatty acid supplementation for the treatment of hepatic steatosis in hyperphagic OLETF rats. (2012). J Nutrition Metabolism, 268680. [PubMed: 21918718]

Committee for the Purpose of Control and Supervision on Experiments on Animals. CPCSEA guidelines for laboratory animal facility. (2003). Indian Jf Pharmacol, 35, 257.

Cusi, K., Kashyap, S., Gastaldelli, A., et al. (2007). Effect on insulin secretion and insulin action of a 48-h reduction of plasma free fatty acids with acipimox in nondiabetic subjects genetically predisposed to type 2 diabetes. Am J Physiol Endocrinol Metab, 292, E1775– E1781.

Feng, R., Luo, C., Li, C., Du, S., Okekunle, A.P., Li, Y. et al., Free fatty acids profile among lean, overweight and obese non-alcoholic fatty liver disease patients: a case –control study. Lipids Health Disease, 16, 165. DOI 10.1186/s12944-017-0551-1

Folch, J., Lees, M., Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226, 497-509.

Georgiadi, A., Kersten, S. (2012). Mechanisms of gene regulation by fatty acids. Advances Nutrition, 3, 127-134.

Ghosh, S., Hazra, A.K., Banerjee, S., Sur, T.K., Chakraborty, R., Ray, N., Mukherjee, B. (1995). Indian marine puffers: alternative sources of polyunsaturated fatty acids (PUFA). 64th Annual Meeting of The Society of Biological Chemists, Lucknow, India.

Gupta, R.K. (2010). Medicinal and aromatic plants with colour plates -traditional and commercial uses, agrotechniques, biodiversity, conservation. 1st ed.; CBS Publishers and Distributors Pvt. Ltd.: Dehli, India, pp. 114-115.

Hazra, A.K., Ghosh, S., Banerjee, S., Mukherjee, B. (1998). Studies on lipid and fatty acid compositions of puffer livers from Indian coastal waters with seasonal variation. JAOCS, 75, 1673-1678.

Indu, R., Adhikari, A., Basak, P., Sur, T.K. (2019). Effect of concomitant therapy of anti-diabetics and hypolipidemics on biochemical and histopathological parameters in animal models. Asian Journal of Pharmacy and Pharmacology, 5, 771-778.

Ji, X., Shi, S., Liu, B., Shan, M., Tang, D., Zhang, W. et al. (2019). Bioactive compounds from herbal medicines to manage dyslipidemia. Biomedicine Pharmacotherapy, 118, 109338. ISSN 0753-3322, https://doi.org/10.1016/j.biopha.2019.109338

Kirtikar, K.R., Basu, B.D. (2008). Indian Medicinal Plants. 2nd ed., vol. 1; International Book Distributers, Dehradun, India, pp. 195-199.

Kumar, S., Sharma, R., Kumar, V., Vyas, G.K., Rathore, A. (2013). Combining molecular-marker and chemical analysis of Capparis deciduas (Capparaceae) in the Thar Desert of Western Rajasthan (India). Rev Biol Trop, 61, 311-320.

Liu, T., Heden, T.D., Morris, E.M., Fritsche, K.L., Vieira-Potter, V.J., Thyfault, J. (2015). High-fat diet alters serum fatty acid profiles in obesity prone rats: implications for in-vitro studies. Lipids, 50, 997-1008. doi:10.1007/s11745-015-4061-5.

Onal, G., Kutlu, O., Gozuacik, D. et al. (2017). Lipid Droplets in Health and Disease. Lipids Health Dis, 16, 128. https://doi.org/10.1186/s12944-017-0521-7

Purohit, A., Vyas, K.B. (2006). Antiatherosclerotic effect of Capparis decidua fruit extract in cholesterol-fed rabbits. Pharm Biol,44, 172-177.

Rathee, S., Mogla, O.P., Rathee, P., Rathee, D. (2010). Quantification of β-sitosterol using HPTLC from Capparis decidua (Forsk.) Edgew. Pharma Chem, 2, 86-92.

Saxena, V.K., Goutam, A. (2008). Isolation and study of the flavone glycoside; luteolin-7-O-β- Dglucopyranoside from the seeds of the Capparis decidua (Forsk.). Int J Chem Sci, 2008, 6, 7-10.

Schofield, J.D., Liu, Y., Rao-Balakrishna, P., Malik, R.A., Soran, H. (2016). Diabetes dyslipidemia. Diabetes Therapy, 7, 203-219.

Sur, T.K., Chatterjee, S., Hazra, A.K., Pradhan, R., Chowdhury, S. (2015). Acute and sub-chronic oral toxicity study of black tea in rodents. Indian J Pharmacol, 47,167-172.

Sur, T.K., Hazra, A., Hazra, A.K., Bhattacharyya, D. (2016). Antioxidant and hepatoprotective properties of Indian Sunderban mangrove Bruguiera gymnorrhiza L. leave. J Basic Clinical Pharmacy, 7, 75-79.

Venkateshan, S., Subramaniyan, V., Chinnasamy, V., Chandiran, S. (2016). Anti-oxidant and anti- hyperlipidemic activity of Hemidesmus indicus in rats fed with high-fat diet. Avicenna J Phytomedicine, 6, 516-525.

Yadav, P., Sarkar, S., Bhatnagar, D. (1997). Action of Capparis deciduas against alloxan-induced oxidative stress and diabetes in rat tissues. Pharmacol Res, 36, 221-228.

Yamato, M., Shiba, T., Yoshida, M., Ide, T., Seri, N., Kudou, W. et al.(2007). Fatty acids increase the circulating levels of oxidative stress factors in mice with diet-induced obesity via redox changes of albumin. FEBS Journal, 274, 3855-3863.

Zhao, L. et al. (2016). A panel of free fatty acid ratios to predict the development of metabolic abnormalities in healthy obese individuals. Sci Rep, 6, 28418. doi: 10.1038/srep28418

Zia-Ul-Haq, M., Ćavar, S., Qayum, M., Imran, I., de Feo, V. (2011). Compositional studies: antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew. Int J Mol Sci. 12, 8846-8861. doi:10.3390/ijms12128846

Downloads

Published

2022-07-04

Issue

Section

Pharmacology