The effect of temperature solubility on particle size and antibacterial activity of nanosilver of gembili’s inulin

Authors

  • Dian Eka Ermawati Department of Pharmacy, Sekolah Vokasi, Universitas Sebelas Maret, Surakarta http://orcid.org/0000-0002-8633-9261
  • Hayunda I'zaaz Fajrin Department of Pharmacy, Math and Natural Science Faculty, Universitas Sebelas Maret, Surakarta
  • Sholichah Rohmani Department of Pharmacy, Sekolah Vokasi, Universitas Sebelas Maret, Surakarta
  • M. Nur Dewi Kartikasari 3Department of Midwifey, Sekolah Vokasi, Universitas Sebelas Maret, Surakarta

DOI:

https://doi.org/10.12928/pharmaciana.v13i1.23185

Keywords:

gembili, inulin, nanosilver, antibacterial, biosynthesis

Abstract

Gembili Tuber (Dioscorea esculenta L.) is an Indonesia local tuber that reported to have potential as a source of inulin. Inulin is one of fiber types and carbohydrates sources derived from plants and has prebiotic and antibacterial activity. However, inulin long chain has low solubility in water, so it is necessary to modify the solubility in the biosynthetic process. In this study, the biosynthetic process was carried out using inulin as bioreducer of silver ions to help increase the absorption of gembili inulin. Gembili inulin was mixed with silver nitrat solution at variation temperature at 25 ℃ and 60 ℃ of biosynthetic process, in order to produce the expected particle size and antibacterial activity against bacteria Staphylococcus aureus and Eshcerichia coli. The results of this study indicate that variations in solubility temperature of inulin in nanosilver biosynthetic produce particle size of 12-49 nm with round shape. Whereas the temperature of inulin solubility did not show any significant difference towards AgNO3 control in the antibacterial activity test against S.aureus and E.coli bacteria. FTIR spectra showed that interaction between functional groups of silver nitrate and gembili inulin. Inulin only acts as a capping agent of nanosilver biosynthetic and does not induce antibacterial activity of nanosilver.

References

Albrecht, M. A., Evans, C. W., & Raston, C. L. (2006). Green chemistry and the health implications of nanoparticles. Green Chemistry, 8(5), pp. 417–432.

Charoenwongpaiboon, T. (2019). Temperature-dependent inulin nanoparticles synthesized by Lactobacillus reuteri 121 inulosucrase and complex formation with flavonoids. Carbohydrate Polymers. Elsevier, 223(June), p. 115044.

Chi, L. (2018). Development and application of bio-sample quantification to evaluate stability and pharmacokinetics of inulin-type fructo-oligosaccharides from Morinda Officinalis. Journal of Pharmaceutical and Biomedical Analysis. Elsevier B.V, 156, pp. 125–132.

Dubey, S. P. (2010). Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids and Surfaces B: Biointerfaces. Elsevier B.V, 80(1), pp. 26–33.

Glibowski, P. (2010). Effect of Thermal and Mechanical Factors on Rheological Properties of High Performance Inulin Gels and Spreads. Journal of Food Engineering. Elsevier Ltd, 99(1), pp. 106–113.

Hanutami, B., & Budiman, A. (2017). Penggunaan Teknologi Nano Pada Formulasi Obat Herbal. Farmaka, 15, pp. 29–39.

Kaviya, S. (2011). Biosynthesis of Silver Nanoparticles Using Citrus Sinensis Peel Extract and Its Antibacterial Activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. Elsevier B.V, 79(3), pp. 594–598.

Kowshik, M. (2003). Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 14(1), pp. 95–100.

Narayanan, K. B., & Sakthivel, N. (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Materials Letters. 62(30), pp. 4588–4590.

Mensink, M. A. (2015). Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydrate Polymers. Elsevier Ltd, 130, pp. 405–419.

Pratiwi, T., Affandi, D. R., & Manuhara, G. J. (2016). Aplikasi Tepung Gembili (Dioscorea esculenta) Sebagai Substansi Tepung Terigu Pada Filler Nugget Ikan Tongkol (Euthynnus affinis), Jurnal Teknologi Hasil Pertanian, 9(1), pp. 34–50.

Shahverdi, A. R. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochemistry, 42(5), pp. 919–923.

Sathishkumar, M., Sneha, K., & Yun, Y.S. (2010). Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour. Technol, 101: 7958–7965.

Tripathi, A. (2017). Differential phytotoxic responses of silver nitrate (AgNO3) and silver nanoparticle (AgNps) in Cucumis sativus L. Plant Gene. Elsevier B.V, 11, pp. 255–264.

Veerasamy, R. (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society. King Saud University, 15(2), pp. 113–120.

Vilchis-Nestor, A. R. (2008). Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Letters, 62(17–18), pp. 3103–3105.

Waidha & Aamir Iqbal. (2014). Synthesis and Characterization of Silver Nano Rod like Structures by Green Synthesis Method Using Curcumin Longa. International Journal of ChemTech Research, 7(3): 1504–8.

Winarti, S. (2014). Pengaruh Foaming Pada Pengeringan Inulin Umbi Gembili (Dioscorea esculenta) Terhadap Karakteristik Fisiko-Kimia dan Aktivitas Prebiotik. Jurnal Agritech Fakultas Teknologi Pertanian UGM, 33(4), pp. 424–432.

Yuniastuti, A. (2017). Pengembangan Produksi Inulin dan FOS Berbasis Gembili (Dioscorea esculenta) Sebagai Antikanker dan Antidiabetik, UNNES press, Semarang.

Downloads

Published

2023-04-03

Issue

Section

Biology Pharmacy