Comparative analysis of the stability features of human alpha-defensins as candidates for the future COVID-19 therapy through molecular dynamics

Authors

  • Taufik Muhammad Fakih Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Indonesia http://orcid.org/0000-0001-7155-4412
  • Dwi Syah Fitra Ramadhan Department of Pharmacy, Poltekkes Kemenkes Makassar, Indonesia
  • Arfan Arfan Faculty of Pharmacy, Universitas Halu Oleo, Indonesia

DOI:

https://doi.org/10.12928/pharmaciana.v12i3.22616

Keywords:

COVID-19, infectious disease, SARS-CoV-2 RBD, alpha-defensin, molecular dynamics, computational approach

Abstract

Coronavirus 19 (COVID-19) is still a global health issue to date, SARS-CoV-2 is a novel coronavirus that is responsible for this sickness. The receptor-binding domain of the SARS-CoV-2 virus associates with angiotensin-converting enzyme 2 (ACE-2) and allows the virus to enter human cells. Natural peptides such alpha-defensin are thought to attach to the SARS-CoV-2 RBD and prohibit it from engaging with ACE-2. Molecular dynamics simulations using a computational approach are utilized to understand the stability of six alpha-defensin macromolecules using the Gromacs 2016 software. The trajectories formed are then analyzed using VMD 1.9.4 and BIOVIA Discovery Studio 2020 software. Finally, the free energy is estimated using the MM/PBSA method. The alpha-defensins 2 macromolecules were found to have the best stability based on numerous study results (trajectory visualization, RMSD, RMSF, and free energy calculations). As a result, these macromolecules could be used to build new antiviral treatments for COVID-19 infectious disease candidates.

References

Battegay, M., Kuehl, R., Tschudin-Sutter, S., Hirsch, H. H., Widmer, A. F., & Neher, R. A. (2020). 2019-novel Coronavirus (2019-nCoV): estimating the case fatality rate - a word of caution. In Swiss medical weekly, 150, w20203. https://doi.org/10.4414/smw.2020.20203

Bonanzinga, T., Zahar, A., Dütsch, M., Lausmann, C., Kendoff, D., & Gehrke, T. (2017). How Reliable Is the Alpha-defensin Immunoassay Test for Diagnosing Periprosthetic Joint Infection? A Prospective Study. Clinical Orthopaedics and Related Research, 475(2), 408–415. https://doi.org/10.1007/s11999-016-4906-0

Chakraborty, S., & Zheng, W. (2015). Decrypting the structural, dynamic, and energetic basis of a monomeric kinesin interacting with a tubulin dimer in three ATPase states by all-atom molecular dynamics simulation. Biochemistry, 54 (3), 859–869. https://doi.org/10.1021/bi501056h

Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. In Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681

Chun, S., Muthu, M., Gopal, J., Paul, D., Kim, D. H., Gansukh, E., & Anthonydhason, V. (2018). The unequivocal preponderance of biocomputation in clinical virology. In RSC Advances, 8, 17334–17345. https://doi.org/10.1039/c8ra00888d

Darusman, F., & Fakih, T. M. (2020). Identification of the molecular mechanism of christinin compounds from Arabian bidara leaves (Ziziphus spina-christi L.) on microorganisms that cause female genital problems through computational approaches. Pharmaciana, 10(3), 249–256. https://doi.org/10.12928/pharmaciana.v10i3.18177

Deirmengian, C., Kardos, K., Kilmartin, P., Gulati, S., Citrano, P., & Booth, R. E. (2015). The Alpha-defensin Test for Periprosthetic Joint Infection Responds to a Wide Spectrum of Organisms. Clinical Orthopaedics and Related Research, 473(7), 2229–2235. https://doi.org/10.1007/s11999-015-4152-x

Fakih, T. M., & Dewi, M. L. (2020). In silico Identification of Characteristics Spike Glycoprotein of SARS-CoV-2 in the Development Novel Candidates for COVID-19 Infectious Diseases. Journal of Biomedicine and Translational Research, 6(2), 48–52. https://doi.org/10.14710/jbtr.v6i2.7590

Gao, B., & Zhu, S. (2021). A fungal defensin targets the sars−cov−2 spike receptor−binding domain. Journal of Fungi, 7(7), 553. https://doi.org/10.3390/jof7070553

Hill, C. P., Yee, J., Selsted, M. E., & Eisenberg, D. (1991). Crystal structure of defensin HNP-3, an amphiphilic dimer: Mechanisms of membrane permeabilization. Science, 51(5000), 1481–1485. https://doi.org/10.1126/science.2006422

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052

Holly, M. K., Diaz, K., & Smith, J. G. (2017). Defensins in Viral Infection and Pathogenesis. Annual Review of Virology, 4(1), 369–391. https://doi.org/10.1146/annurev-virology-101416-041734

Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial. The Scripps Research Institute Molecular.

Ibrahim, B., McMahon, D. P., Hufsky, F., Beer, M., Deng, L., Mercier, P. Le, Palmarini, M., Thiel, V., & Marz, M. (2018). A new era of virus bioinformatics. In Virus Research, 251, 86–90. https://doi.org/10.1016/j.virusres.2018.05.009

Isele-Holder, R. E., Mitchell, W., & Ismail, A. E. (2012). Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions. Journal of Chemical Physics, 137, 174107. https://doi.org/10.1063/1.4764089

Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. Al, Hossain, M. N., Ali, M. A., & Halim, M. A. (2020). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1761883

Khan, M. T., Ali, A., Wang, Q., Irfan, M., Khan, A., Zeb, M. T., Zhang, Y. J., Chinnasamy, S., & Wei, D. Q. (2020). Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2—a molecular dynamic study. Journal of Biomolecular Structure and Dynamics, 39(10), 3627–3637. https://doi.org/10.1080/07391102.2020.1769733

Khezri, A., Karimi, A., Yazdian, F., Jokar, M., Mofradnia, S. R., Rashedi, H., & Tavakoli, Z. (2018). Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: Emphasis on biofilm reduction. International Journal of Biological Macromolecules, 114, 972–978 https://doi.org/10.1016/j.ijbiomac.2018.03.100

Kumari, R., Kumar, R., Consortium, O. S. D. D., & Lynn, A. (2014). g _ mmpbsa - A GROMACS tool for MM-PBSA and its optimization for high-throughput binding energy calculations. J. Chem. Inf. Model, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m

Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B. L., & Grubmüller, H. (2019). More bang for your buck: Improved use of GPU nodes for GROMACS 2018. Journal of Computational Chemistry, 40(27), 2418–2431. https://doi.org/10.1002/jcc.26011

Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS ONE, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264

Ni, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., Hou, C., Wang, H., Liu, J., Yang, D., Xu, Y., Cao, Z., & Gao, Z. (2020). Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. In Critical Care, 24(1), 422. https://doi.org/10.1186/s13054-020-03120-0

Ren, J., Yuan, X., Li, J., Lin, S., Yang, B., Chen, C., Zhao, J., Zheng, W., Liao, H., Yang, Z., & Qu, Z. (2020). Assessing the performance of the g_mmpbsa tools to simulate the inhibition of oseltamivir to influenza virus neuraminidase by molecular mechanics Poisson–Boltzmann surface area methods. Journal of the Chinese Chemical Society, 67(1), 46–53. https://doi.org/10.1002/jccs.201900148

Smith, M. D., Rao, J. S., Segelken, E., & Cruz, L. (2015). Force-Field Induced Bias in the Structure of Aβ21-30: A Comparison of OPLS, AMBER, CHARMM, and GROMOS Force Fields. Journal of Chemical Information and Modeling, 55(12), 2587–2595. https://doi.org/10.1021/acs.jcim.5b00308

Swanson, J. M. J., Henchman, R. H., & McCammon, J. A. (2004). Revisiting Free Energy Calculations: A Theoretical Connection to MM/PBSA and Direct Calculation of the Association Free Energy. Biophysical Journal, 86(1), 67–74. https://doi.org/10.1016/S0006-3495(04)74084-9

Szyk, A., Wu, Z., Tucker, K., Yang, D., Lu, W., & Lubkowski, J. (2006). Crystal structures of human α-defensins HNP4, HD5, and HD6. Protein Science, 15(12), 2749–2760. https://doi.org/10.1110/ps.062336606

Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular and Molecular Immunology, 17(6), 613–620. https://doi.org/10.1038/s41423-020-0400-4

Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S., Yang, Z., Wu, Y., & Ying, T. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. In Emerging Microbes and Infections, 9(1), 382–385. https://doi.org/10.1080/22221751.2020.1729069

Van den Berge, K., Roux de Bézieux, H., Street, K., Saelens, W., Cannoodt, R., Saeys, Y., Dudoit, S., & Clement, L. (2020). Trajectory-based differential expression analysis for single-cell sequencing data. Nature Communications, 11, 1201. https://doi.org/10.1038/s41467-020-14766-3

Vermaas, J. V., Hardy, D. J., Stone, J. E., Tajkhorshid, E., & Kohlmeyer, A. (2016). TopoGromacs: Automated Topology Conversion from CHARMM to GROMACS within VMD. Journal of Chemical Information and Modeling, 56(6), 1112–1116. https://doi.org/10.1021/acs.jcim.6b00103

Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 181(2), 281–292. https://doi.org/10.1016/j.cell.2020.02.058

Wang, Chen, Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. In The Lancet, 395(10223), 470–473. https://doi.org/10.1016/S0140-6736(20)30185-9

Wang, Cheng, Wang, S., Li, D., Wei, D. Q., Zhao, J., & Wang, J. (2020). Human Intestinal Defensin 5 Inhibits SARS-CoV-2 Invasion by Cloaking ACE2. Gastroenterology, 159(3), 1145–1147. https://doi.org/10.1053/j.gastro.2020.05.015

Wei, G., de Leeuw, E., Pazgier, M., Yuan, W., Zou, G., Wang, J., Ericksen, B., Lu, W. Y., Lehrer, R. I., & Lu, W. (2009). Through the looking glass, mechanistic insights from enantiomeric human defensins. Journal of Biological Chemistry, 284(42), 29180–29192. https://doi.org/10.1074/jbc.M109.018085

WHO. (2020). Coronavirus disease (COVID-2019) situation reports. World Health Organisation.

Wilson, S. S., Wiens, M. E., & Smith, J. G. (2013). Antiviral mechanisms of human defensins. In Journal of Molecular Biology, 425(24), 4965–4980. https://doi.org/10.1016/j.jmb.2013.09.038

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3

Xie, C., Prahl, A., Ericksen, B., Wu, Z., Zeng, P., Li, X., Lu, W. Y., Lubkowski, J., & Lu, W. (2005). Reconstruction of the conserved β-bulge in mammalian defensins using D-amino acids. Journal of Biological Chemistry, 280(38), 32921–32929. https://doi.org/10.1074/jbc.M503084200

Xu, C., Wang, A., Marin, M., Honnen, W., Ramasamy, S., Porter, E., Subbian, S., Pinter, A., Melikyan, G. B., Lu, W., & Chang, T. L. (2021). Human defensins inhibit SARS-CoV-2 infection by blocking viral entry. Viruses, 13(7), 1246. https://doi.org/10.3390/v13071246

Zhang, G., Pomplun, S., Loftis, A. R., Loas, A., & Pentelute, B. L. (2020). The first-in-class peptide binder to the SARS-CoV-2 spike protein. BioRxiv.

Zhao, H., Zhou, J., Zhang, K., Chu, H., Liu, D., Poon, V. K. M., Chan, C. C. S., Leung, H. C., Fai, N., Lin, Y. P., Zhang, A. J. X., Jin, D. Y., Yuen, K. Y., & Zheng, B. J. (2016). A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Scientific Reports, 6, 22008. https://doi.org/10.1038/srep22008

Zhou, P., Yang, X. Lou, Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. Di, Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 588(7836), 6. https://doi.org/10.1038/s41586-020-2012-7

Downloads

Published

2022-11-14

Issue

Section

Analytical Pharmacy and Medicinal Chemistry