Comparative analysis of the stability features of human alpha-defensins as candidates for the future COVID-19 therapy through molecular dynamics
DOI:
https://doi.org/10.12928/pharmaciana.v12i3.22616Keywords:
COVID-19, infectious disease, SARS-CoV-2 RBD, alpha-defensin, molecular dynamics, computational approachAbstract
Coronavirus 19 (COVID-19) is still a global health issue to date, SARS-CoV-2 is a novel coronavirus that is responsible for this sickness. The receptor-binding domain of the SARS-CoV-2 virus associates with angiotensin-converting enzyme 2 (ACE-2) and allows the virus to enter human cells. Natural peptides such alpha-defensin are thought to attach to the SARS-CoV-2 RBD and prohibit it from engaging with ACE-2. Molecular dynamics simulations using a computational approach are utilized to understand the stability of six alpha-defensin macromolecules using the Gromacs 2016 software. The trajectories formed are then analyzed using VMD 1.9.4 and BIOVIA Discovery Studio 2020 software. Finally, the free energy is estimated using the MM/PBSA method. The alpha-defensins 2 macromolecules were found to have the best stability based on numerous study results (trajectory visualization, RMSD, RMSF, and free energy calculations). As a result, these macromolecules could be used to build new antiviral treatments for COVID-19 infectious disease candidates.
References
Battegay, M., Kuehl, R., Tschudin-Sutter, S., Hirsch, H. H., Widmer, A. F., & Neher, R. A. (2020). 2019-novel Coronavirus (2019-nCoV): estimating the case fatality rate - a word of caution. In Swiss medical weekly, 150, w20203. https://doi.org/10.4414/smw.2020.20203
Bonanzinga, T., Zahar, A., Dütsch, M., Lausmann, C., Kendoff, D., & Gehrke, T. (2017). How Reliable Is the Alpha-defensin Immunoassay Test for Diagnosing Periprosthetic Joint Infection? A Prospective Study. Clinical Orthopaedics and Related Research, 475(2), 408–415. https://doi.org/10.1007/s11999-016-4906-0
Chakraborty, S., & Zheng, W. (2015). Decrypting the structural, dynamic, and energetic basis of a monomeric kinesin interacting with a tubulin dimer in three ATPase states by all-atom molecular dynamics simulation. Biochemistry, 54 (3), 859–869. https://doi.org/10.1021/bi501056h
Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. In Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681
Chun, S., Muthu, M., Gopal, J., Paul, D., Kim, D. H., Gansukh, E., & Anthonydhason, V. (2018). The unequivocal preponderance of biocomputation in clinical virology. In RSC Advances, 8, 17334–17345. https://doi.org/10.1039/c8ra00888d
Darusman, F., & Fakih, T. M. (2020). Identification of the molecular mechanism of christinin compounds from Arabian bidara leaves (Ziziphus spina-christi L.) on microorganisms that cause female genital problems through computational approaches. Pharmaciana, 10(3), 249–256. https://doi.org/10.12928/pharmaciana.v10i3.18177
Deirmengian, C., Kardos, K., Kilmartin, P., Gulati, S., Citrano, P., & Booth, R. E. (2015). The Alpha-defensin Test for Periprosthetic Joint Infection Responds to a Wide Spectrum of Organisms. Clinical Orthopaedics and Related Research, 473(7), 2229–2235. https://doi.org/10.1007/s11999-015-4152-x
Fakih, T. M., & Dewi, M. L. (2020). In silico Identification of Characteristics Spike Glycoprotein of SARS-CoV-2 in the Development Novel Candidates for COVID-19 Infectious Diseases. Journal of Biomedicine and Translational Research, 6(2), 48–52. https://doi.org/10.14710/jbtr.v6i2.7590
Gao, B., & Zhu, S. (2021). A fungal defensin targets the sars−cov−2 spike receptor−binding domain. Journal of Fungi, 7(7), 553. https://doi.org/10.3390/jof7070553
Hill, C. P., Yee, J., Selsted, M. E., & Eisenberg, D. (1991). Crystal structure of defensin HNP-3, an amphiphilic dimer: Mechanisms of membrane permeabilization. Science, 51(5000), 1481–1485. https://doi.org/10.1126/science.2006422
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052
Holly, M. K., Diaz, K., & Smith, J. G. (2017). Defensins in Viral Infection and Pathogenesis. Annual Review of Virology, 4(1), 369–391. https://doi.org/10.1146/annurev-virology-101416-041734
Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial. The Scripps Research Institute Molecular.
Ibrahim, B., McMahon, D. P., Hufsky, F., Beer, M., Deng, L., Mercier, P. Le, Palmarini, M., Thiel, V., & Marz, M. (2018). A new era of virus bioinformatics. In Virus Research, 251, 86–90. https://doi.org/10.1016/j.virusres.2018.05.009
Isele-Holder, R. E., Mitchell, W., & Ismail, A. E. (2012). Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions. Journal of Chemical Physics, 137, 174107. https://doi.org/10.1063/1.4764089
Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. Al, Hossain, M. N., Ali, M. A., & Halim, M. A. (2020). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1761883
Khan, M. T., Ali, A., Wang, Q., Irfan, M., Khan, A., Zeb, M. T., Zhang, Y. J., Chinnasamy, S., & Wei, D. Q. (2020). Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2—a molecular dynamic study. Journal of Biomolecular Structure and Dynamics, 39(10), 3627–3637. https://doi.org/10.1080/07391102.2020.1769733
Khezri, A., Karimi, A., Yazdian, F., Jokar, M., Mofradnia, S. R., Rashedi, H., & Tavakoli, Z. (2018). Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: Emphasis on biofilm reduction. International Journal of Biological Macromolecules, 114, 972–978 https://doi.org/10.1016/j.ijbiomac.2018.03.100
Kumari, R., Kumar, R., Consortium, O. S. D. D., & Lynn, A. (2014). g _ mmpbsa - A GROMACS tool for MM-PBSA and its optimization for high-throughput binding energy calculations. J. Chem. Inf. Model, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
Kutzner, C., Páll, S., Fechner, M., Esztermann, A., de Groot, B. L., & Grubmüller, H. (2019). More bang for your buck: Improved use of GPU nodes for GROMACS 2018. Journal of Computational Chemistry, 40(27), 2418–2431. https://doi.org/10.1002/jcc.26011
MartÃnez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS ONE, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
Ni, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., Hou, C., Wang, H., Liu, J., Yang, D., Xu, Y., Cao, Z., & Gao, Z. (2020). Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. In Critical Care, 24(1), 422. https://doi.org/10.1186/s13054-020-03120-0
Ren, J., Yuan, X., Li, J., Lin, S., Yang, B., Chen, C., Zhao, J., Zheng, W., Liao, H., Yang, Z., & Qu, Z. (2020). Assessing the performance of the g_mmpbsa tools to simulate the inhibition of oseltamivir to influenza virus neuraminidase by molecular mechanics Poisson–Boltzmann surface area methods. Journal of the Chinese Chemical Society, 67(1), 46–53. https://doi.org/10.1002/jccs.201900148
Smith, M. D., Rao, J. S., Segelken, E., & Cruz, L. (2015). Force-Field Induced Bias in the Structure of Aβ21-30: A Comparison of OPLS, AMBER, CHARMM, and GROMOS Force Fields. Journal of Chemical Information and Modeling, 55(12), 2587–2595. https://doi.org/10.1021/acs.jcim.5b00308
Swanson, J. M. J., Henchman, R. H., & McCammon, J. A. (2004). Revisiting Free Energy Calculations: A Theoretical Connection to MM/PBSA and Direct Calculation of the Association Free Energy. Biophysical Journal, 86(1), 67–74. https://doi.org/10.1016/S0006-3495(04)74084-9
Szyk, A., Wu, Z., Tucker, K., Yang, D., Lu, W., & Lubkowski, J. (2006). Crystal structures of human α-defensins HNP4, HD5, and HD6. Protein Science, 15(12), 2749–2760. https://doi.org/10.1110/ps.062336606
Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular and Molecular Immunology, 17(6), 613–620. https://doi.org/10.1038/s41423-020-0400-4
Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S., Yang, Z., Wu, Y., & Ying, T. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. In Emerging Microbes and Infections, 9(1), 382–385. https://doi.org/10.1080/22221751.2020.1729069
Van den Berge, K., Roux de Bézieux, H., Street, K., Saelens, W., Cannoodt, R., Saeys, Y., Dudoit, S., & Clement, L. (2020). Trajectory-based differential expression analysis for single-cell sequencing data. Nature Communications, 11, 1201. https://doi.org/10.1038/s41467-020-14766-3
Vermaas, J. V., Hardy, D. J., Stone, J. E., Tajkhorshid, E., & Kohlmeyer, A. (2016). TopoGromacs: Automated Topology Conversion from CHARMM to GROMACS within VMD. Journal of Chemical Information and Modeling, 56(6), 1112–1116. https://doi.org/10.1021/acs.jcim.6b00103
Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 181(2), 281–292. https://doi.org/10.1016/j.cell.2020.02.058
Wang, Chen, Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. In The Lancet, 395(10223), 470–473. https://doi.org/10.1016/S0140-6736(20)30185-9
Wang, Cheng, Wang, S., Li, D., Wei, D. Q., Zhao, J., & Wang, J. (2020). Human Intestinal Defensin 5 Inhibits SARS-CoV-2 Invasion by Cloaking ACE2. Gastroenterology, 159(3), 1145–1147. https://doi.org/10.1053/j.gastro.2020.05.015
Wei, G., de Leeuw, E., Pazgier, M., Yuan, W., Zou, G., Wang, J., Ericksen, B., Lu, W. Y., Lehrer, R. I., & Lu, W. (2009). Through the looking glass, mechanistic insights from enantiomeric human defensins. Journal of Biological Chemistry, 284(42), 29180–29192. https://doi.org/10.1074/jbc.M109.018085
WHO. (2020). Coronavirus disease (COVID-2019) situation reports. World Health Organisation.
Wilson, S. S., Wiens, M. E., & Smith, J. G. (2013). Antiviral mechanisms of human defensins. In Journal of Molecular Biology, 425(24), 4965–4980. https://doi.org/10.1016/j.jmb.2013.09.038
Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
Xie, C., Prahl, A., Ericksen, B., Wu, Z., Zeng, P., Li, X., Lu, W. Y., Lubkowski, J., & Lu, W. (2005). Reconstruction of the conserved β-bulge in mammalian defensins using D-amino acids. Journal of Biological Chemistry, 280(38), 32921–32929. https://doi.org/10.1074/jbc.M503084200
Xu, C., Wang, A., Marin, M., Honnen, W., Ramasamy, S., Porter, E., Subbian, S., Pinter, A., Melikyan, G. B., Lu, W., & Chang, T. L. (2021). Human defensins inhibit SARS-CoV-2 infection by blocking viral entry. Viruses, 13(7), 1246. https://doi.org/10.3390/v13071246
Zhang, G., Pomplun, S., Loftis, A. R., Loas, A., & Pentelute, B. L. (2020). The first-in-class peptide binder to the SARS-CoV-2 spike protein. BioRxiv.
Zhao, H., Zhou, J., Zhang, K., Chu, H., Liu, D., Poon, V. K. M., Chan, C. C. S., Leung, H. C., Fai, N., Lin, Y. P., Zhang, A. J. X., Jin, D. Y., Yuen, K. Y., & Zheng, B. J. (2016). A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Scientific Reports, 6, 22008. https://doi.org/10.1038/srep22008
Zhou, P., Yang, X. Lou, Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. Di, Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 588(7836), 6. https://doi.org/10.1038/s41586-020-2012-7
Downloads
Published
Issue
Section
License
Authors who publish with Pharmaciana agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.