Chemical qualitative analysis and spf value stability of nutmeg seed oil in microemulsions with tween 80 and PEG 400 as surfactants and cosurfactants

Authors

  • Ayu Shabrina Universitas Wahid Hasyim
  • Erika Indah Safitri Faculty of Pharmacy, University of Wahid Hasyim, Semarang
  • Risha Fillah Fithria
  • Misbahul Munir Faculty of Pharmacy, University of Wahid Hasyim, Semarang
  • Sumantri Sumantri Faculty of Pharmacy, University of Wahid Hasyim, Semarang

DOI:

https://doi.org/10.12928/pharmaciana.v12i1.21997

Keywords:

nutmeg Oil, , microemulsion, SPF, Stability, GC-MS

Abstract

Nutmeg oil contains α-pinene, which can be used as sunscreen. The combination of Tween 80 and PEG 400 can maintain the stability of nutmeg oil microemulsion. This research was a follow-up study that aims to determine the stability of the SPF value and qualitative chemical content of nutmeg seed oil microemulsions (NSM). NSM was made with a nutmeg seed oil concentration of 6.4% and tween 80 and PEG 400 as surfactants and cosurfactants with variations in the ratio of F1 (5: 4), F2 (6: 4), and F3 (7: 4). Nutmeg seed oil and NSM content was analyzed using GC-MS. NSM formula were tested for in vitro SPF value stability by storing NSM in a climatic chamber at 30 °C ± 2 °C with RH 65 % ± 5 % for 4 weeks. The SPF values were calculated every week. GC-MS data were analyzed descriptively and data of SPF value stability were analyzed statistically using one way ANOVA. The GC-MS results of nutmeg seed oil showed 35 components, including significant compounds, namely α-pinene, sabinene, β-phellandrene and also α-terpinolene. GC-MS results of NSM showed those significant compounds were still detected after being formulated in microemulsion. The results of the sunscreen activity test of NSM before storage were 10.31 ± 0.03 (F1); 10.47 ± 0.07 (F2); 10.45 ± 0.03 (F3) and did not show significant change after storage for 4 weeks (p > 0.05). The SPF values of NSM were categorized in maximum activity.

 

Author Biography

Ayu Shabrina, Universitas Wahid Hasyim

Departemen Farmasetika dan Teknologi Farmasi

References

Ansory, H. M., Sari, E. N., Nilawati, A., Handayani, S., & Aznam, N. (2019). Sunscreen and Antioxidant Potential of Myristicin in Nutmeg Essential Oils (Myristica fragrans). 2nd Bakti Tunas Husada-Health Science International Conference, 26(Table 6), 138–142. https://doi.org/10.2991/ahsr.k.200523.034

Badawi, A. A., El-Aziz, N. A., Amin, M. M., & Sheta, N. M. (2014). Topical benzophenone-3 microemulsion-based gels: Preparation, evaluation and determination of microbiological UV blocking activity. International Journal of Pharmacy and Pharmaceutical Sciences, 6(8), 562–570

BPOM. (2014). Pedoman uji toksisitas nonklinik secara in vivo. BPOM Jakarta

Chen, Z.-Q., Liu, Y., Zhao, J.-H., Wang, L., & Feng, N.-P. (2012). Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system. International Journal of Nanomedicine, 1115. https://doi.org/10.2147/IJN.S28761

Del Prado-Audelo, M. L., Cortés, H., Caballero-Florán, I. H., González-Torres, M., Escutia-Guadarrama, L., Bernal-Chávez, S. A., Giraldo-Gomez, D. M., Magaña, J. J., & Leyva-Gómez, G. (2021). Therapeutic Applications of Terpenes on Inflammatory Diseases. Frontiers in Pharmacology, 12(August), 1–7.

https://doi.org/10.3389/fphar.2021.704197

Evans, W., & Evans, D. (2009). Volatile Oils and Resins. In W. Evans, & D. Evans, Trease and Evan’s Pharmacognosy (pp. 263-303). USA: Elsevier.

Ginting, B., Mustanir, M., Helwati, H., Desiyana, L. S., Eralisa, E., & Mujahid, R. (2017). Antioxidant Activity of N-Hexane Extract of Nutmeg Plants From South Aceh Province. Jurnal Natural, 17(1), 39. https://doi.org/10.24815/jn.v17i1.6969

Gozali, D., Fara, W., Jutti, L., & Khoirunisa, A. (2015). Peningkatan permeasi mikroemulsi ketoprofen. Indonesian Journal of Pharmaceutical Science and Technology, 55-62. https://doi.org/10.15416/ijpst.v2i2.7811

Handa, M., Ujjwal, R. R., Vasdev, N., Flora, S. J. S., & Shukla, R. (2021). Optimization of surfactant- and cosurfactant-aided pine oil nanoemulsions by isothermal low-energy methods for anticholinesterase activity. ACS Omega, 6(1), 559–568. https://doi.org/10.1021/acsomega.0c05033

Hassan, I., Dorjay, K., Sami, A., & Anwar, P. (2013). Sunscreens and Antioxidants as Photo-protective Measures: An update. Our Dermatology Online, 4(3), 369–374. https://doi.org/10.7241/ourd.20133.92

Kajbafvala, A., & Salabat, A. (2021). Microemulsion and microemulsion gel formulation for transdermal delivery of rutin: Optimization, in-vitro/ex-vivo evaluation and SPF determination. Journal of Dispersion Science and Technology, 1–16. https://doi.org/10.1080/01932691.2021.1880928

Karthikeyan, R., Kanimozhi, G., Madahavan, N. R., Agilan, B., Ganesan, M., Prasad, N. R., & Rathinaraj, P. (2019). Alpha-pinene attenuates UVA-induced photoaging through inhibition of matrix metalloproteinases expression in mouse skin. Life Sciences, 217, 110–118. https://doi.org/10.1016/j.lfs.2018.12.003

Karthikeyan, R., Kanimozhi, G., Prasad, N. R., Agilan, B., Ganesan, M., & Srithar, G. (2018). Alpha pinene modulates UVA-induced oxidative stress, DNA damage and apoptosis in human skin epidermal keratinocytes. Life Sciences, 212, 150–158. https://doi.org/10.1016/j.lfs.2018.10.004

Kim, S., Ng, W. K., Shen, S., Dong, Y., & Tan, R. B. H. (2009). Phase behavior, microstructure transition, and antiradical activity of sucrose laurate/propylene glycol/the essential oil of Melaleuca alternifolia/water microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348(1–3), 289–297. https://doi.org/10.1016/j.colsurfa.2009.07.043

Lv, X., Cong, Z., Liu, Z., Ma, X., Xu, M., Tian, Y., Zhang, X., Xu, B., Zhang, J., & Tang, Z. (2018). Improvement of the solubility, photostability, antioxidant activity and UVB photoprotection of trans-resveratrol by essential oil based microemulsions for topical application. Journal of Drug Delivery Science and Technology, 48, 346–354. https://doi.org/10.1016/j.jddst.2018.10.017

Mansur, J. , Breder, M. N. , Mansur, M. C. A., & Azulay, R. . (1986). Determination of sun protecting factor by spectrophotometry. An Bras Dermatol, 6, 121–124

Nazar, M. F., Khan, A. M., & Shah, S. S. (2009). Microemulsion system with improved loading of piroxicam: A study of microstructure. AAPS PharmSciTech, 10(4), 1286–1294. https://doi.org/10.1208/s12249-009-9328-9

Pagar, S., P., Pathan, A. V., Shaikh, N., & Kasture, V. S. (2012). Formulation and evaluation of microemulsion based poly-herbal sunscreen cream. International Conference and Exhibition on Cosmetology & Cosmetics.

Putu, N., & Artini, R. (2020). Validasi Dan Verifikasi Hasil Uji Sun Protection Factor ( SPF ) Pada Sediaan Sunblock Dan Sunscreen Bermerk Dengan Metode Spektrofotometri. The Journal Of Muhammadiyah Medical Laboratory Technologist, 3(1), 29–38

Rantika, N., Hindun, S., Fauziyah, A. S., Sriarumtias, F. F., & Najihudin, A. (2020). Formulation and Determination of SPF Value from Sweet Orange (Citrus x aurantium L.) As A Sunsreen. Journal of Current Pharmaceutical Sciences, 4(1), 262–267

Sarvesh Katiyar, B., Sarvesh Katiyar, S., Satishchandra Mishra, P., & Lakshmi Sailaja, D. (2013). Microemulsions: A novel drug carrier system. International Journal of Pharmaceutical Sciences Review and Research, 20(2), 138–148. https://doi.org/10.25258/ijddt.v1i2.8838

Seo, S. H., Kim, E., Joo, Y., Lee, J., Oh, K. T., Hwang, S. J., & Choi, K. Y. (2020). A mixed micellar formulation for the transdermal delivery of an Indirubin analog. Pharmaceutics, 12(2). https://doi.org/10.3390/pharmaceutics12020175

Shabrina, A., Safitri, E. I., & Pratiwi, I. (2021). Stabilitas fisik dan antioksidan mikroemulsi minyak biji pala dengan variasi tween 80 – peg 400. Media Farmasi, 12(1), 25–30. https://doi.org/10.32382/mf.v17i1.2049

Šojić, B., Tomović, V., Kocić-Tanackov, S., Škaljac, S., Ikonić, P., Džinić, N., Živković, N., Jokanović, M., Tasić, T., & Kravić, S. (2015). Effect of nutmeg (Myristica fragrans) essential oil on the oxidative and microbial stability of cooked sausage during refrigerated storage. Food Control, 54, 282–286. https://doi.org/10.1016/j.foodcont.2015.02.007

Wiwiek, I. A., Martodihardjo, S., Soenardi, Jumina, Budiana, I. G. M. N., & Mustofa. (2017). Preparation and In-Vitro characterization of Self-Nano emulsifying system of C- Phenylcalix-[4]- Resorcinaryl Octacinnamate and C-Methylcalix-[4]- Resorcinaryl Octabenzoate as ultraviolet absorbers. Bali Medical Journal, 6(3), 569–577

Yadav, V., Jadhav, P., Kanase, K., Bodhe, A., & Dombe, S. (2018). Preparation and evaluation of microemulsion containing antihypertensive drug. International Journal of Applied Pharmaceutics, 10(5), 138–146. https://doi.org/10.22159/ijap.2018v10i5.27415

Zhang, Y., & Lee, H. K. (2013). Low-density solvent-based vortex-assisted surfactant-enhanced-emulsification liquid–liquid microextraction combined with gas chromatography–mass spectrometry for the fast determination of phthalate esters in bottled water. Journal of Chromatography A, 1274, 28–35. https://doi.org/10.1016/j.chroma.2012.12.017

Downloads

Published

2022-03-10

Issue

Section

Pharmaceutics and Pharmaceutical Technology