CYP2A6*4 allele gene high frequency associated with low-density lipoprotein cholesterol (LDL-C) among Javanese Indonesian smokers
DOI:
https://doi.org/10.12928/pharmaciana.v11i2.20744Keywords:
cardiovascular disease, CYP2A6, Javanese male, LDL-C, and polymorphismAbstract
The CYP2A6 gene, which codes the CYP2A6 enzyme, has known to have ahigh polymorphism. This polymorphism could decrease, increase, or eliminate the CYP2A6 enzyme activity. CYP2A6*4, an inactive allele, decreased the CYP2A6 enzyme activity. One of the CYP2A6 enzyme-specific substrates is nicotine. This inactive allele could decrease nicotine metabolism that causes high nicotine levels in the blood. In addition, it caused the increasing levels of Low-Density Lipoprotein Cholesterol (LDL-C) by expanding the lipolysis process. The purpose of this research was to evaluate the effect of the CYP2A6*4 allele gene on LDL-C levels. Respondents in this study were 31 male Javanese smokers. This research is an analytic observational study with a cross-sectional design. Polymerase chain reaction (PCR) methods use to identification the CYP2A6*4 allele gene. This study shows that a high-frequency CYP2A6*4 alleles gene among the subject was detected, with an allele frequency is 93.55%. Furthermore, this CYP2A6*4 allele gene did not impact LDL-C levels, with the Odd Ratio value was 1.636 (P-Value = 0.737). In conclusion, the CYP2A6*4 allele gene does not significantly affect the LDL-C levels in Javanese Indonesian smokers.
References
Akrodou, Y. M. (2015). CYP2A6 polymorphisms may strengthen individualized treatment for nicotine dependence. Scientifica, 1(1), 1–7. https://doi.org/10.1155/2015/491514
Alessandro, A. D., Boeckelmann, I., Goette, A., & Hammwho, M. (2011). Nicotine , cigarette smoking and cardiac arrhythmia : an overview. European Journal of Preventive Cardiology, 19(3), 297–305. https://doi.org/10.1177/1741826711411738
Bajaj, M. (2012). Nicotine and insulin resistance: when the smoke clears. Diabetes, 61(12), 3078–3080. https://doi.org/10.2337/db12-1100
Benowitz, L, N., Helen, G., Dempsey, D., Jacob, P., & Tyndale, R. (2016). Disposition kinetics and metabolism of nicotine and cotinine in African American smokers: impact of CYP2A6 genetic variation and enzymatic activity. Pharmacogenet Genomics, 26(7), 1–22. https://doi.org/10.1097/FPC.0000000000000222.Disposition
Benowitz, N. L. (2011). Smokeless tobacco as a nicotine delivery device: Harm or harm reduction? Clinical Pharmacology and Therapeutics, 90(4), 491–493. https://doi.org/10.1038/clpt.2011.191
Breitling, L. (2013). Related cardiovascular disease genetic determination of nicotine dependence. Arterioscler Thromb Vasc Biol, 33, 1468–1472. https://doi.org/10.1161/ATVBAHA.112.300157
Devaranavadgi, B., Aski, B., Kashinath, R., & Hundekari, I. (2012). Effect of cigarette smoking on blood lipids – A study in belgaum, northern karnataka, India. Global Journal of Medical Research, 12(6), 57–61. https://doi.org/10.1586/edm.09.33
Di, Y., Chow, V., Yang, L.-P., & Zhou, S.-F. (2010). Structure, function, regulation and polymorphism of human cytochrome P450 2A6. Current Drug Metabolism, 10(7), 754–780. https://doi.org/10.2174/138920009789895507
Fukami, T., Nakajima, M., Yamanaka, H., Fukushima, Y., McLeod, H., & Yokoi, T. (2007). Short communication a novel duplication type of CYP2A6 gene in African-American abstract : The American Society for Pharmacology and Experimental Therapeutics, 35(4), 515–520. https://doi.org/10.1124/dmd.106.013557.al
Gitaningtyas, E. (2018). Identifikasi alel CYP2A6*4 pada isolat DNA perokok ras kulit hitam Papua Indonesia dengan metode polymerase chain reaction. Universitas Sanata Dharma
Heatherton, T. D., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The_Fagerstrom_Test_for_Nicotine_Dependence_A_Revi.pdf. British Journal of Addiction, 86(9), 1119–1127
Kemenkes RI. (2018). Riskesdas 2018.
Liu, T., David, S. P., Tyndale, R. F., Wang, H., Zhou, Q., Ding, P., He, Y., Yu, X., Chen, W., Crump, C., & Wen, X. (2011). Associations of CYP2A6 genotype with smoking behaviors in southern China. NIH Public Access, 106(5), 985–994. https://doi.org/10.1111/j.1360-0443.2010.03353.x.Associations
Messner, B., & Bernhard, D. (2014). Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(3), 509–515. https://doi.org/10.1161/ATVBAHA.113.300156
Minarti, N, S., Ketaren, I., & Hadi, P, D. (2014). Hubungan antara perilaku merokok terhadap kadar kolesterol low density lipoprotein (LDL) serum pada pekerja cv. Julian Pratama Pontianak. UNTAN, 1(1), 1–17.
Minematsu, N., Nakamura, H., Furuuchi, M., Nakajima, T., Takahashi, S., Tateno, H., & Ishizaka, A. (2006). Limitation of cigarette consumption by CYP2A6*4, *7 and *9 polymorphisms. The European Respiratory Journal, 27(2), 289–292. https://doi.org/10.1183/09031936.06.00056305
Mishra, A., Chaturvedi, P., Datta, S., Sinukumar, S., Joshi, P., & Garg, A. (2015). Harmful effects of nicotine. Indian Journal of Medical and Paediatric Oncology, 36(1), 24–31. https://doi.org/10.4103/0971-5851.151771
Murtiyaningsih, H. (2017). Isolasi DNA genom dan identifikasi kekerabatan genetik nanas menggunakan RAPD (Random Amplified Polimorfic DNA). Agritrop, 15(1), 1–10.
Mwenifumbo, J. C., Al Koudsi, N., Ho, M. K., Zhou, Q., Hoffmann, E. B., Sellers, E. M., & Tyndale, R. F. (2008). Novel and established CYP2A6 alleles impair in vivo nicotine metabolism in a population of Black African descent. Human Mutation, 29(5), 679–688. https://doi.org/10.1002/humu.20698
Mwenifumbo, J. C., & Tyndale, R. F. (2007). Genetic variability in CYP2A6 and the pharmacokinetics of nicotine. Pharmacogenomics, 8(10), 1385–1402. https://doi.org/10.2217/14622416.8.10.1385
Nakajima, M., Fukami, T., Yamanaka, H., Higashi, E., Sakai, H., Yoshida, R., Kwon, J., Mcleod, H. L., & Yokoi, T. (2006). Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. 80(3), 282–297.https://doi.org/10.1016/j.clpt.2006.05.012
Akrodou, Y. M. (2015). CYP2A6 polymorphisms may strengthen individualized treatment for nicotine dependence. Scientifica, 1(1), 1–7. https://doi.org/10.1155/2015/491514
Alessandro, A. D., Boeckelmann, I., Goette, A., & Hammwho, M. (2011). Nicotine , cigarette smoking and cardiac arrhythmia : an overview. European Journal of Preventive Cardiology, 19(3), 297–305. https://doi.org/10.1177/1741826711411738
Bajaj, M. (2012). Nicotine and insulin resistance: when the smoke clears. Diabetes, 61(12), 3078–3080. https://doi.org/10.2337/db12-1100
Benowitz, L, N., Helen, G., Dempsey, D., Jacob, P., & Tyndale, R. (2016). Disposition kinetics and metabolism of nicotine and cotinine in African American smokers: impact of CYP2A6 genetic variation and enzymatic activity. Pharmacogenet Genomics, 26(7), 1–22. https://doi.org/10.1097/FPC.0000000000000222.Disposition
Benowitz, N. L. (2011). Smokeless tobacco as a nicotine delivery device: Harm or harm reduction? Clinical Pharmacology and Therapeutics, 90(4), 491–493. https://doi.org/10.1038/clpt.2011.191
Breitling, L. (2013). Related cardiovascular disease genetic determination of nicotine dependence. Arterioscler Thromb Vasc Biol, 33, 1468–1472. https://doi.org/10.1161/ATVBAHA.112.300157
Devaranavadgi, B., Aski, B., Kashinath, R., & Hundekari, I. (2012). Effect of cigarette smoking on blood lipids – A study in belgaum, northern karnataka, India. Global Journal of Medical Research, 12(6), 57–61. https://doi.org/10.1586/edm.09.33
Di, Y., Chow, V., Yang, L.-P., & Zhou, S.-F. (2010). Structure, function, regulation and polymorphism of human cytochrome P450 2A6. Current Drug Metabolism, 10(7), 754–780. https://doi.org/10.2174/138920009789895507
Fukami, T., Nakajima, M., Yamanaka, H., Fukushima, Y., McLeod, H., & Yokoi, T. (2007). Short communication a novel duplication type of CYP2A6 gene in African-American abstract : The American Society for Pharmacology and Experimental Therapeutics, 35(4), 515–520. https://doi.org/10.1124/dmd.106.013557.al
Gitaningtyas, E. (2018). Identifikasi alel CYP2A6*4 pada isolat DNA perokok ras kulit hitam Papua Indonesia dengan metode polymerase chain reaction. Universitas Sanata Dharma
Heatherton, T. D., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The_Fagerstrom_Test_for_Nicotine_Dependence_A_Revi.pdf. British Journal of Addiction, 86(9), 1119–1127
Kemenkes RI. (2018). Riskesdas 2018.
Liu, T., David, S. P., Tyndale, R. F., Wang, H., Zhou, Q., Ding, P., He, Y., Yu, X., Chen, W., Crump, C., & Wen, X. (2011). Associations of CYP2A6 genotype with smoking behaviors in southern China. NIH Public Access, 106(5), 985–994. https://doi.org/10.1111/j.1360-0443.2010.03353.x.Associations
Messner, B., & Bernhard, D. (2014). Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(3), 509–515. https://doi.org/10.1161/ATVBAHA.113.300156
Minarti, N, S., Ketaren, I., & Hadi, P, D. (2014). Hubungan antara perilaku merokok terhadap kadar kolesterol low density lipoprotein (LDL) serum pada pekerja cv. Julian Pratama Pontianak. UNTAN, 1(1), 1–17.
Minematsu, N., Nakamura, H., Furuuchi, M., Nakajima, T., Takahashi, S., Tateno, H., & Ishizaka, A. (2006). Limitation of cigarette consumption by CYP2A6*4, *7 and *9 polymorphisms. The European Respiratory Journal, 27(2), 289–292. https://doi.org/10.1183/09031936.06.00056305
Mishra, A., Chaturvedi, P., Datta, S., Sinukumar, S., Joshi, P., & Garg, A. (2015). Harmful effects of nicotine. Indian Journal of Medical and Paediatric Oncology, 36(1), 24–31. https://doi.org/10.4103/0971-5851.151771
Murtiyaningsih, H. (2017). Isolasi DNA genom dan identifikasi kekerabatan genetik nanas menggunakan RAPD (Random Amplified Polimorfic DNA). Agritrop, 15(1), 1–10.
Mwenifumbo, J. C., Al Koudsi, N., Ho, M. K., Zhou, Q., Hoffmann, E. B., Sellers, E. M., & Tyndale, R. F. (2008). Novel and established CYP2A6 alleles impair in vivo nicotine metabolism in a population of Black African descent. Human Mutation, 29(5), 679–688. https://doi.org/10.1002/humu.20698
Mwenifumbo, J. C., & Tyndale, R. F. (2007). Genetic variability in CYP2A6 and the pharmacokinetics of nicotine. Pharmacogenomics, 8(10), 1385–1402. https://doi.org/10.2217/14622416.8.10.1385
Nakajima, M., Fukami, T., Yamanaka, H., Higashi, E., Sakai, H., Yoshida, R., Kwon, J., Mcleod, H. L., & Yokoi, T. (2006). Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. 80(3), 282–297. https://doi.org/10.1016/j.clpt.2006.05.012
Patramurti, C, & Fenty. (2017). Studi genotipe sitokrom P450 2A6 Alel CYP2A6 * 4 dan CYP2A6 * 9 pada subyek uji perokok suku Jawa Indonesia ( Genotyping Study of Cytochrome P450 2A6 Alel CYP2A6 * 1 and CYP2A6 * 9 among Javanese Indonesian Smokers ). Jurnal Ilmu Kefarmasian Indonesia, 15(1), 50–56
Patramurti, C, & Fenty. (2020). Association between smoking behaviour and glycohemoglobine. Jurnal Farmasi Sains Dan Komunitas, 17(2), 76–85
Patramurti, Christine, . S., Nurrochmad, A., & Martono, S. (2015). Polymorphism of Cytochrome P450 2a6 (Cyp2a6*1 and Cyp2a6*4) Among Javanese Indonesian Smoker and Non Smoker. Indonesian Journal of Pharmacy, 26(1), 11–19. https://doi.org/10.14499/indonesianjpharm26iss1pp11
Patramurti, Christine, Martono, S., Sugiyanto, S., & Nurrochmad, A. (2017). Inter-individual variability of cytochrome P450 2A6 activity in Javanese Smokers’ urine. Media Penelitian Dan Pengembangan Kesehatan, 27(3), 133–140. https://doi.org/10.22435/mpk.v27i3.4777.133-140
Patramurti, & Fenty. (2019). Genetic Polymorphism Cytochrome P4502a6 Allel *4 And *9: Studi On Glycohemoglobine Level Among Javanese Indonesian Smokers. Pharmaceutical Sciences and Research, 6(2), 82–88. https://doi.org/10.7454/psr.v6i2.4488
Pelt-Verkuil, E, V., Belkum, Van, A., Hays, & P., J. (2008). Principles and technical aspects of PCR amplification. Springer Netherlands
Perhimpunan Dokter Hipertensi Indonesia. (2019). Konsensus penatalaksanaan hipertensi 2019 (L. Anna, H. Eka, & M. Hustrini (eds.)).
Rao, & Subash. (2013). The effect of chronic tobacco smoking and chewing on the lipid profile. Journal of Clinical and Diagnostic Research, 7(1), 31–34. https://doi.org/10.7860/JCDR/2012/5086.2663
Sanhia, A. M., Pangemanan, D., & Engka, J. N. (2015). Gambaran kadar kolesterol low density lipoprotein. E-Biomedik(EBm), 3(April), 460–465
Schoedel, K. a, Hoffmann, E. B., Rao, Y., Sellers, E. M., & Tyndale, R. F. (2004). Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians. Pharmacogenetics, 14(9), 615–626. https://doi.org/10.1097/00008571-200409000-00006
Singh, D, P., Gulati, D., & Singh, P. (2016). Smoking and its association with serum lipid levels. International Journal of Medical Research and Review, 4(11), 2064–2070. https://doi.org/10.17511/ijmrr.2016.i11.28
Tanner, A, J., Henderson, A, J., Buchwald, D., Howard, V, B., Henderson, N, P., & Tyndale, F, R. (2017). Variation in CYP2A6 and nicotine metabolism among two American Indian tribal groups differing in smoking patterns and risk for tobacco-related cancer. Pharmacogenet Genomics, 27(5), 169–178. https://doi.org/10.1016/j.physbeh.2017.03.040
TCSC-IAKMI. (2020). Atlas Tembakau Indonesia 2020
Watanabe, N., Fukushima, M., Taniguchi, A., Okumura, T., Nomura, Y., Nishimura, F., Aoyama, S., Yabe, D., Izumi, Y., Ohtsubo, R., Nakai, Y., & Nagasaka, S. (2011). Smoking, white blood cell counts, and TNF system activity in Japanese male subjects with normal glucose tolerance. Tobacco Induced Diseases, 9(1), 12. https://doi.org/10.1186/1617-9625-9-12
World Health Organization. (2014). Indonesia
World Health Organization. (2017). Cardiovascular Disease Risk Factor
World Health Organization. (2020). Tobacco
Yusof, W., & Gan, S. H. (2009). High prevalence of CYP2A6*4 and CYP2A6*9 alleles detected among a Malaysian population. Clinica Chimica Acta, 403(1–2), 105–109. https://doi.org/10.1016/j.cca.2009.01.032
Downloads
Published
Issue
Section
License
Authors who publish with Pharmaciana agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.