Formulations of liposomal vaccine containing AdhO36 antigen and β-glucan as immunoadjuvant

Authors

  • Hidajah Rachmawati University of Muhammadiyah Malang
  • Raditya Weka Nugraheni University of Muhammadiyah Malang
  • Firasti Agung Nugrahening Sumadi University of Muhammadiyah Malang
  • Helmy Yusuf Airlangga University

DOI:

https://doi.org/10.12928/pharmaciana.v11i3.19264

Keywords:

liposome, AdhO36, β-glucan, Salmonella typhi, dimethyl dioctadecyl ammonium bromide (DDAB), cationic liposome

Abstract

Humans are the most crucial host of Salmonella Typhi as it has limited ability to reproduce outside the human body. Salmonella Typhi infections caused Typhoid fever which can be prevented with vaccines. This study aims to develop an effective typhoid fever oral vaccine using a liposomal delivery system.  Several studies showed that the immunization of AdhO36 protein from Salmonella Typhi orally provides significant protection in inhibiting the Salmonella Typhi to the mice intestine. β-Glucan is a potent immunostimulant for macrophages activations. Meanwhile, the method used to produce Liposome formulations was using thin-film hydration. The liposomal products had good characteristics based on their particle size. The particle size results met the requirement for optimum intestinal absorption 399.220+28.095 nm Liposome+AdhO36 and 383.360+8.594 nm Liposome+β-glucan. Based on the zeta potential measurement, the electrical charges of the three formulations were positive, meaning that the liposome is cationic because of the DDAB (Dimethyl Dioctadecyl Ammonium Bromide) component. The positive charge will facilitate the internalization of antigen to the immunity cells.

References

Agnihotri, S. A., Soppimath, K. S., & Β-geri, G. V. (2010). Controlled release application of multilamellar vesicles: A novel drug delivery approach. Drug Delivery, 17(2), 92–101. https://doi.org/10.3109/10717540903509027

Baxa, U. (2018). Imaging of Liposomes by transmission electron microscopy. In S. E. McNeil (Ed.), Characterization of Nanoparticles Intended for Drug Delivery (Vol. 1682, pp. 73–88). Springer New York. https://doi.org/10.1007/978-1-4939-7352-1_8

Giddam, A. K., Zaman, M., Skwarczynski, M., & Toth, I. (2012). Liposome-based delivery system for vaccine candidates: Constructing an effective formulations. Nanomedicine, 7(12), 1877–1893. https://doi.org/10.2217/nnm.12.157

Gotuzzo, E. (2018). Typhoid fever: A current problem. International Journal of Infectious Diseases, 73, 46–47. https://doi.org/10.1016/j.ijid.2018.04.3528

Honary, S., & Zahir, F. (2013). Effect of zeta potential on the properties of nano-drug delivery systems—a review (Part 1). Tropical Journal of Pharmaceutical Research, 12(2), 255-264–264. https://doi.org/10.4314/tjpr.v12i2.19

Korsholm, K. S., Hansen, J., Karlsen, K., Filskov, J., Mikkelsen, M., Lindenstrøm, T., Schmidt, S. T., Andersen, P., & Christensen, D. (2014). Induction of CD8+ T-cell responses against subunit antigens by the novel cationic liposomal CAF09 adjuvant. Vaccine, 32(31), 3927–3935. https://doi.org/10.1016/j.vaccine.2014.05.050

Kundera, I. N., Santoso, S., A, A., & Winarsih, S. (2012). Ekspresi protein ADHF36 Pada perubahan osmolaritas serta pH lingkungan hidup Salmonella Typhi secara in vitro. Jurnal Kedokteran Hewan - Indonesian Journal of Veterinary Sciences, 6(1).

MacLennan, C. A. (2015). Global health vaccines against the invasive Salmonelloses: enteric fever and invasive non-typhoidal Salmonella. Advanced Vaccine Research Methods for the Decade of Vaccines, 387. https://doi.org/10.21775/9781910190036.16

Megayasa, N. A., Winarsih, S., & Santoso, S. (2016). Reaksi silang antara antibodi Adho36 Salmonella Typhi dengan outer membrane protein vibrio cholerae menggunakan metode Western Blotting. Majalah Kesehatan FKUB, 1(1), 16–23

Novák, M., Synytsya, A., Gedeon, O., SlepiÄka, P., Procházka, V., Synytsya, A., Blahovec, J., Hejlová, A., & ÄŒopíková, J. (2012). Yeast β(1-3),(1-6)-d-glucan films: Preparation and characterization of some structural and physical properties. Carbohydrate Polymers, 87(4), 2496–2504. https://doi.org/10.1016/j.carbpol.2011.11.031

Novak, M., & Vetvicka, V. (2008). β-Glucans, History, and the Present: immunomodulatory aspects and mechanisms of action. Journal of Immunotoxicology, 5(1), 47–57. https://doi.org/10.1080/15476910802019045

Nowakowski, A. B., Wobig, W. J., & Petering, D. H. (2014). Native SDS-PAGE: High Resolution electrophoretic separation of proteins with retention of native properties including bound metal ions. Metallomics : Integrated Biometal Science, 6(5), 1068–1078. https://doi.org/10.1039/c4mt00033a

Nugraheni, R. W., Yusuf, H., & Mulyadi, N. A. (2020). Freeze-dried liposome formulations for small molecules, nucleic acid, and protein delivery. Systematic Reviews in Pharmacy, 11(7), 143–151

Ong, S. G. M., Ming, L. C., Lee, K. S., & Yuen, K. H. (2016). Influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Pharmaceutics, 8(3). https://doi.org/10.3390/pharmaceutics8030025

Perrie, Y., Kastner, E., Kaur, R., Wilkinson, A., & Ingham, A. J. (2013). A case-study investigating the physicochemical characteristics that dictate the function of a liposomal adjuvant. Human Vaccines & Immunotherapeutics, 9(6), 1374–1381. https://doi.org/10.4161/hv.24694

Rachmawati, H., Sumarno, H. K., Barlianto, W., Sardjono, T. W., Endharti, A. T., & Winarsih, S. (2019). In Silico approach: Î’- Glucan and AdhO36 combinations enhance the Th1 immune response against Salmonella Typhi infection

Rachmawati, H., Winarsih, S., Prawiro, S. R., Barlianto, W., Santoso, S., Djunaedi, D., Endharti, A. T., Sardjono, T. W., Khotimah, H., Prihanti, G. S., Nugraheni, R. W., Sumadi, F. A. N., & Yusuf, H. (2020). AdhO36 liposomes from Salmonella Typhi in combination with β-Glucan Immuno-adjuvant From Candida albicans cell wall as oral vaccine against typhoid fever in mice model. Open Access Macedonian Journal of Medical Sciences, 8(A), 441–448. https://doi.org/10.3889/oamjms.2020.4422

Santoso, S. (2018). Adhesion test of hemagglutinin-O36 Protein of Salmonella Typhi Malang isolate at Balb/C Mice Enterocytes. Jurnal Kedokteran Brawijaya, 18(2), 51–59

Slayton, R., Date, K., & Mintz, E. (2013). Vaccination for typhoid fever in Sub-Saharan Africa. Human Vaccines & Immunotherapeutics, 9(4), 903–906. https://doi.org/10.4161/hv.23007

Sumadi, F. A. N. (2020). Kitosan Teradiasi Gamma 5 kGy mempengaruhi muatan permukaan Nanopartikel MikroRNA. Journal of Herbal, Clinical and Pharmaceutical Science (HERCLIPS), 1(02), 20–23. https://doi.org/10.30587/herclips.v1i02.1412

Suvra Roy, V. K. (2014). A practical approach on sds page for separation of protein. International Journal of Science and Research (IJSR), 3(8), 955–960. https://doi.org/10.12988/astp.2014.48109

Ugboko, H., & De, N. (2014). De, N. Mechanisms of Antibiotic resistance in Salmonella typhi. International Journal of Current Microbiology and Applied Science, 3(12), 461–76

Vetvicka, V., & Vetvickova, J. (2007). Physiological effects of different types of β-glucan. Biomedical Papers of the Medical Faculty of Palacky University in Olomouc, 151(2). https://doi.org/10.5507/bp.2007.038

Winarsih, S., Sujuti, H., & Yasmin, A. (2017). Pengaruh kadar glukosa terhadap ekspresi protein Adho36 bakteri Salmonella Typhi. Majalah Kesehatan FKUB, 4(3), 105–113. https://doi.org/10.21776/ub.majalahkesehatan.2017.004.03.1

Wulandari, W. T., Rochliadi, A., & Arcana, I. M. (2016). Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering, 107, 012045. https://doi.org/10.1088/1757-899X/107/1/012045

Yusuf, H., Nugraheni, R. W., & Setyawan, D. (2019). Effect of cellulose derivative matrix and oligosaccharide on the solid state and physical characteristics of dimethyldioctadecylammonium-liposomes for vaccine. Research in Pharmaceutical Sciences, 14(1), 1–11. https://doi.org/10.4103/1735-5362.251847

Downloads

Published

2021-10-23

Issue

Section

Pharmaceutics and Pharmaceutical Technology