Homology modeling and mutation prediction of ACE2 from COVID-19

Authors

DOI:

https://doi.org/10.12928/pharmaciana.v11i2.19089

Keywords:

ACE2, SARS-CoV-2, homology modeling, mutation prediction

Abstract

SARS-CoV-2 has become a pandemic in the world. The virus binds to the Angiotensin-Converting Enzyme 2 (ACE2) receptor, which is found in epithelial cells such as in the lungs, to generate the pathology of COVID-19. It is essential to analyze the characteristics of ACE2 in understanding the development of the disease and study potential new drugs. The analysis was carried out using computer simulations to speed up protein analysis that utilized Artificial Intelligence technology, databases, and big data. Homology modeling is a method to exhibit homologous of protein families, hence the model and arrangement of protein sequences modeled are established. This research aims to determine the possibility of mutations in ACE2 by performing the mutation prediction. The result shows reliable homologous modeling with the score of GA341, MPQS, Z-DOPE, and TSVMod NO35 were 1; 1.28252; -0.47; and 0.793, respectively. Moreover, Gene Ontology (GO) analysis describes that ACE2 has a molecular transport function in cells while there are no mutations found occurred in ACE2 analyzed using SIFT and PROVEAN.

Author Biography

Purnawan Pontana Putra, Faculty of Pharmacy, Universitas Andalas

Faculty Pharmacy

References

Ali, A., & Vijayan, R. (2020). Dynamics of the ACE2–SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-71188-3

Barros, E. P., Casalino, L., Gaieb, Z., Dommer, A. C., Wang, Y., Fallon, L., Raguette, L., Belfon, K., Simmerling, C., & Amaro, R. E. (2021). The flexibility of ACE2 in the context of SARS-CoV-2 infection. Biophysical Journal, 120(6), 1072–1084. https://doi.org/10.1016/j.bpj.2020.10.036

Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins: Structure, Function and Genetics, 71(1), 261–277. https://doi.org/10.1002/prot.21715

Biasini, M., Schmidt, T., Bienert, S., Mariani, V., Studer, G., Haas, J., Johner, N., Schenk, A. D., Philippsen, A., & Schwede, T. (2013). OpenStructure: An integrated software framework for computational structural biology. Acta Crystallographica Section D: Biological Crystallography, 69(5), 701–709. https://doi.org/10.1107/S0907444913007051

Choi, Y., & Chan, A. P. (2015). Provean web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16), 2745–2747. https://doi.org/10.1093/bioinformatics/btv195

Choudhuri, S. (2014). Additional bioinformatic analyses involving protein sequences. Bioinformatics for Beginners, 183–207. https://doi.org/10.1016/b978-0-12-410471-6.00008-6

Dessimoz, C., & Å kunca, N. (2017). The Gene Ontology Handbook (Vol. 1446). Humana Press. https://doi.org/10.1007/978-1-4939-3743-1

Gromiha, M. M., Nagarajan, R., & Selvaraj, S. (2018). Protein structural bioinformatics: An overview. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3, 445–459. https://doi.org/10.1016/B978-0-12-809633-8.20278-1

Hussain, M., Jabeen, N., Raza, F., Shabbir, S., Baig, A. A., Amanullah, A., & Aziz, B. (2020). Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. Journal of Medical Virology, 92(9), 1580–1586. https://doi.org/10.1002/jmv.25832

Idakwo, G., Luttrell, J., Chen, M., Hong, H., Zhou, Z., Gong, P., & Zhang, C. (2018). A review on machine learning methods for in silico toxicity prediction. Journal of Environmental Science and Health - Part C Environmental Carcinogenesis and Ecotoxicology Reviews, 36(4), 169–191. https://doi.org/10.1080/10590501.2018.1537118

Li, Y. Y. (2012). Lack of association of ACE2 G8790A gene mutation with essential hypertension in the Chinese Population: A meta-analysis involving 5260 subjects. Frontiers in Physiology, 3 SEP. https://doi.org/10.3389/fphys.2012.00364

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8

Luan, J., Lu, Y., Jin, X., & Zhang, L. (2020). Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochemical and Biophysical Research Communications, 526(1), 165–169. https://doi.org/10.1016/j.bbrc.2020.03.047

Ozono, S., Zhang, Y., Ode, H., Sano, K., Tan, T. S., Imai, K., Miyoshi, K., Kishigami, S., Ueno, T., Iwatani, Y., Suzuki, T., & Tokunaga, K. (2021). SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-21118-2

Piplani, S., Singh, P. K., Winkler, D. A., & Petrovsky, N. (2020). In silico comparison of spike protein-ACE2 binding affinities across species; significance for the possible origin of the SARS-CoV-2 virus. 2.

Sakkiah, S., Guo, W., Pan, B., Ji, Z., Yavas, G., Azevedo, M., Hawes, J., Patterson, T. A., & Hong, H. (2021). Elucidating interactions between SARS-CoV-2 trimeric spike protein and ACE2 using homology modeling and molecular dynamics simulations. Frontiers in Chemistry, 8. https://doi.org/10.3389/fchem.2020.622632

Sensoy, O., Almeida, J. G., Shabbir, J., Moreira, I. S., & Morra, G. (2017). Computational studies of G protein-coupled receptor complexes: Structure and dynamics. Methods in Cell Biology, 142, 205–245. https://doi.org/10.1016/bs.mcb.2017.07.011

Sim, N. L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012). SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40(W1). https://doi.org/10.1093/nar/gks539

Skariyachan, S., & Garka, S. (2018). Exploring the binding potential of carbon nanotubes and fullerene towards major drug targets of multidrug resistant bacterial pathogens and their utility as novel therapeutic agents. Fullerenes, Graphenes and Nanotubes: A Pharmaceutical Approach, 1–29. https://doi.org/10.1016/B978-0-12-813691-1.00001-4

Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel Coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS Coronavirus. Journal of Virology, 94(7). https://doi.org/10.1128/jvi.00127-20

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). Swiss-model: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427

Webb, B, Eswar, N., Fan, H., Khuri, N., Pieper, U., Dong, G. Q., Sali, A., Francisco, S., & Francisco, S. (2014). Author ’ s personal copy comparative modeling of drug target proteins ☆. In Chemistry, Molecular Sciences and Chemical Engineering. Elsevier Inc. https://doi.org/10.1016/B978-0-12-409547-2.11133-3

Webb, Benjamin, & Sali, A. (2016). Comparative protein structure modeling using modeller. Current Protocols in Bioinformatics, 2016, 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3

Wiltgen, M. (2018). Algorithms for structure comparison and analysis: Homology modelling of proteins. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3, 38–61. https://doi.org/10.1016/B978-0-12-809633-8.20484-6

Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762

Ali, A., & Vijayan, R. (2020). Dynamics of the ACE2–SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-71188-3

Barros, E. P., Casalino, L., Gaieb, Z., Dommer, A. C., Wang, Y., Fallon, L., Raguette, L., Belfon, K., Simmerling, C., & Amaro, R. E. (2021). The flexibility of ACE2 in the context of SARS-CoV-2 infection. Biophysical Journal, 120(6), 1072–1084. https://doi.org/10.1016/j.bpj.2020.10.036

Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins: Structure, Function and Genetics, 71(1), 261–277. https://doi.org/10.1002/prot.21715

Biasini, M., Schmidt, T., Bienert, S., Mariani, V., Studer, G., Haas, J., Johner, N., Schenk, A. D., Philippsen, A., & Schwede, T. (2013). OpenStructure: An integrated software framework for computational structural biology. Acta Crystallographica Section D: Biological Crystallography, 69(5), 701–709. https://doi.org/10.1107/S0907444913007051

Choi, Y., & Chan, A. P. (2015). Provean web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16), 2745–2747. https://doi.org/10.1093/bioinformatics/btv195

Choudhuri, S. (2014). Additional bioinformatic analyses involving protein sequences. Bioinformatics for Beginners, 183–207. https://doi.org/10.1016/b978-0-12-410471-6.00008-6

Dessimoz, C., & Å kunca, N. (2017). The Gene Ontology Handbook (Vol. 1446). Humana Press. https://doi.org/10.1007/978-1-4939-3743-1

Gromiha, M. M., Nagarajan, R., & Selvaraj, S. (2018). Protein structural bioinformatics: An overview. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3, 445–459. https://doi.org/10.1016/B978-0-12-809633-8.20278-1

Hussain, M., Jabeen, N., Raza, F., Shabbir, S., Baig, A. A., Amanullah, A., & Aziz, B. (2020). Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. Journal of Medical Virology, 92(9), 1580–1586. https://doi.org/10.1002/jmv.25832

Idakwo, G., Luttrell, J., Chen, M., Hong, H., Zhou, Z., Gong, P., & Zhang, C. (2018). A review on machine learning methods for in silico toxicity prediction. Journal of Environmental Science and Health - Part C Environmental Carcinogenesis and Ecotoxicology Reviews, 36(4), 169–191. https://doi.org/10.1080/10590501.2018.1537118

Li, Y. Y. (2012). Lack of association of ACE2 G8790A gene mutation with essential hypertension in the Chinese Population: A meta-analysis involving 5260 subjects. Frontiers in Physiology, 3 SEP. https://doi.org/10.3389/fphys.2012.00364

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8

Luan, J., Lu, Y., Jin, X., & Zhang, L. (2020). Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochemical and Biophysical Research Communications, 526(1), 165–169. https://doi.org/10.1016/j.bbrc.2020.03.047

Ozono, S., Zhang, Y., Ode, H., Sano, K., Tan, T. S., Imai, K., Miyoshi, K., Kishigami, S., Ueno, T., Iwatani, Y., Suzuki, T., & Tokunaga, K. (2021). SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-21118-2

Piplani, S., Singh, P. K., Winkler, D. A., & Petrovsky, N. (2020). In silico comparison of spike protein-ACE2 binding affinities across species; significance for the possible origin of the SARS-CoV-2 virus. 2.

Sakkiah, S., Guo, W., Pan, B., Ji, Z., Yavas, G., Azevedo, M., Hawes, J., Patterson, T. A., & Hong, H. (2021). Elucidating interactions between SARS-CoV-2 trimeric spike protein and ACE2 using homology modeling and molecular dynamics simulations. Frontiers in Chemistry, 8. https://doi.org/10.3389/fchem.2020.622632

Sensoy, O., Almeida, J. G., Shabbir, J., Moreira, I. S., & Morra, G. (2017). Computational studies of G protein-coupled receptor complexes: Structure and dynamics. Methods in Cell Biology, 142, 205–245. https://doi.org/10.1016/bs.mcb.2017.07.011

Sim, N. L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012). SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40(W1). https://doi.org/10.1093/nar/gks539

Skariyachan, S., & Garka, S. (2018). Exploring the binding potential of carbon nanotubes and fullerene towards major drug targets of multidrug resistant bacterial pathogens and their utility as novel therapeutic agents. Fullerenes, Graphenes and Nanotubes: A Pharmaceutical Approach, 1–29. https://doi.org/10.1016/B978-0-12-813691-1.00001-4

Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel Coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS Coronavirus. Journal of Virology, 94(7). https://doi.org/10.1128/jvi.00127-20

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). Swiss-model: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427

Webb, B, Eswar, N., Fan, H., Khuri, N., Pieper, U., Dong, G. Q., Sali, A., Francisco, S., & Francisco, S. (2014). Author ’ s personal copy comparative modeling of drug target proteins ☆. In Chemistry, Molecular Sciences and Chemical Engineering. Elsevier Inc. https://doi.org/10.1016/B978-0-12-409547-2.11133-3

Webb, Benjamin, & Sali, A. (2016). Comparative protein structure modeling using modeller. Current Protocols in Bioinformatics, 2016, 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3

Wiltgen, M. (2018). Algorithms for structure comparison and analysis: Homology modelling of proteins. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3, 38–61. https://doi.org/10.1016/B978-0-12-809633-8.20484-6

Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762

Zhang, C., Freddolino, P. L., & Zhang, Y. (2017). Cofactor: Improved protein function prediction by combining structure, sequence and protein-protein interaction information. Nucleic Acids Research, 45(W1), W291–W299. https://doi.org/10.1093/nar/gkx366

Zhao, Y., Zhao, Z., Wang, Y., Zhou, Y., Ma, Y., & Zuo, W. (2020). Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. BioRxiv, 2020.01.26.919985. https://doi.org/10.1101/2020.01.26.919985

Zhou, P., Yang, X. Lou, Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. Di, Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Downloads

Published

2021-07-30

Issue

Section

Analytical Pharmacy and Medicinal Chemistry