Effect of carboxymethylcellulose sodium addition as stabilizer for physicochemical characteristic of purple sweet potato fortified yogurt (Ipomoea batatas L.)
DOI:
https://doi.org/10.12928/pharmaciana.v11i1.18088Keywords:
carboxymethylcellulose sodium, stabilizer, yogurt, fortification, purple sweet potatoAbstract
The yoghurt consisted of low-fat milk, three bacterial strains starter, which included: L. bulgaricus ATCC 11842, L. plantarum ATCC 8014, and B. longum (1:1:1); purple sweet potato puree (Ipomoea batatas, L.) and carboxymethylcellulose sodium with the concentration of 0.6%, 1.2%, and 1.8%. Purple sweet potato fortification in yogurt can prevent hypercholesterolemic conditions because it inhibits lipid and sugar absorption in the intestine. Unfortunately, there is one shortcoming in the production of yogurt which affects the final product quality. This shortcoming is in the decrease in the air holding capacity (whey off) during the production due to the pH level within the isoelectric point of casein. This causes precipitation and phase separation. This study will add a stabilizer to the formula to overcome it. The stabilizer used is carboxymethylcellulose sodium, which is semi-synthetic water-soluble ester polymer cellulose. This study aimed to determine the optimal concentration of carboxymethylcellulose sodium and its effect on purple sweet potato yogurt's physicochemical and organoleptic properties. The product quality evaluations were on organoleptic evaluation, density, viscosity, and pH level. Centrifugation and freeze-thaw tests were also performed to evaluate product stability. The results showed that carboxymethylcellulose sodium could maintain the stability of purple sweet potato yogurt by binding the air content, increasing consistency, and smoothing the texture even though it did not affect the freezing point of the product. This study gave the best results for purple sweet potato yogurt with 1.2% carboxymethylcellulose sodium concentration.
References
Arancibia, C., Navarro-Lisboa, R., Zúñiga, R. N., & Matiacevich, S. (2016). Application of CMC as thickener on nanoemulsions based on olive oil: Physical properties and stability. International Journal of Polymer Science, 2016, 1–10. https://doi.org/10.1155/2016/6280581
Bhattarai N, Pradhananga M, M. S. (2015). Effects of various stabilizers on sensorial quality of yoghurt. Sunsari Technical College Journal, 2(1), 7–12.
Cakrawati, D., & Kusumah, M. A. (2016). Pengaruh penambahan cmc sebagai senyawa penstabil terhadap yoghurt tepung gembili. Agrointek, 10(2), 77. https://doi.org/10.21107/agrointek.v10i2.2469
Chairunnissa, H., Balia, R. L., Pratama, A., Hadiat, D. R., Teknologi Pengolahan Produk Peternakan, L., Peternakan, F., Bandung Sumedang km, J., & Sumedang, J. (2017). Karakteristik kimia set yoghurt dengan bahan baku susu tepung dengan penambahan jus bit (Beta Vulgaris L.). In journal.unpad.ac.id (Vol. 17, Issue 1). http://journal.unpad.ac.id/jurnalilmuternak/article/view/14824
He, X., Li, X., Lv, Y., & He, Q. (2015). Composition and color stability of anthocyanin-based extract for purple sweet potato. Food Science and Technology , 35(3), 468–473. https://doi.org/10.1590/1678-457X.6687
Hornedo-Ortega, R., Ãlvarez-Fernández, M. A., Cerezo, A. B., Garcia-Garcia, I., Troncoso, A. M., & Garcia-Parrilla, M. C. (2017). Influence of fermentation process on the anthocyanin composition of wine and vinegar elaborated from strawberry. Journal of Food Science, 82(2), 364–372. https://doi.org/10.1111/1750-3841.13624
Ibrahim, A. I., Rifda, N., Erminawati, W., Hidayah, D., & Shima, E. H. (2020). Influence of temperature and time on microbial, physicochemical and functional quality of goat milk. African Journal of Food Science, 14(4), 86–91. https://doi.org/10.5897/AJFS2020.1912
Izadi, Z., Nasirpour, A., Garoosi, G. A., & Tamjidi, F. (2015). Rheological and physical properties of yogurt enriched with phytosterol during storage. Journal of Food Science and Technology, 52(8), 5341–5346. https://doi.org/10.1007/s13197-014-1593-2
Ju, J.-H., Yoon, H.-S., Park, H.-J., Kim, M.-Y., Shin, H.-K., Park, K.-Y., Yang, J.-O., Sohn, M.-S., & Do, M.-S. (2011). Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 Adipocytes In Vitro. Journal of Medicinal Food, 14(10), 1097–1106. https://doi.org/10.1089/jmf.2010.1450
Khairani, A. F., Islami, U., Anggun Syamsunarno, M. R., & Lantika, U. A. (2020). Synbiotic purple sweet potato yogurt ameliorate lipid metabolism in high fat diet mice model. Biomedical and Pharmacology Journal, 13(1). https://doi.org/10.13005/bpj/1874
Layadi, N., Sedyandini, P., Aylianawati, & Soetaredjo, F. E. . (2009). Pengaruh waktu simpan terhadap kualitas soyghurt dengan penambahan gula dan stabiliser. Widya Teknik, 8(1), 1–11.
Mahomud, M. S., Katsuno, N., & Nishizu, T. (2017). Role of whey protein-casein complexes on yoghurt texture. Reviews in Agricultural Science, 5(0), 1–12. https://doi.org/10.7831/ras.5.1
Mohan, A., Hadi, J., Gutierrez-Maddox, N., Li, Y., Leung, I. K. H., Gao, Y., Shu, Q., & Quek, S. Y. (2020). Sensory, microbiological and physicochemical characterisation of functional manuka honey yogurts containing probiotic Lactobacillus reuteri DPC16. Foods, 9(1). https://doi.org/10.3390/foods9010106
Nguyen, L., & Hwang, E. S. (2016). Quality characteristics and antioxidant activity of yogurt supplemented with aronia (aronia melanocarpa) juice. Preventive Nutrition and Food Science, 21(4), 330–337. https://doi.org/10.3746/pnf.2016.21.4.330
Perna, A., Intaglietta, I., Simonetti, A., & Gambacorta, E. (2014). Antioxidant activity of yogurt made from milk characterized by different casein haplotypes and fortified with chestnut and sulla honeys. Journal of Dairy Science, 97(11), 6662–6670. https://doi.org/10.3168/jds.2013-7843
Raikos, V., Ni, H., Hayes, H., & Ranawana, V. (2018). Antioxidant properties of a yogurt beverage enriched with Salal (Gaultheria shallon) Berries and Blackcurrant (Ribes nigrum) pomace during cold storage. Beverages, 5(1), 2. https://doi.org/10.3390/beverages5010002
Sawitri, M. E., Manab, A., & Palupi, T. W. L. (2008). Kajian penambahan gelatin terhadap keasaman, pH, daya ikat air dan sineresis yogurt. Jurnal Ilmu Dan Teknologi Hasil Ternak, 3(1), 35–42
Sinaga, H., Bansal, N., & Bhandari, B. (2017). Effects of milk pH alteration on casein micelle size and gelation properties of milk. International Journal of Food Properties, 20(1), 179–197 https://doi.org/10.1080/10942912.2016.1152480
Sinko, P. J. (2011). Chemical kinetics and stability. In martin’s physical pharmacy and pharmaceutical sciences: physical chemical and biopharmaceutical principles in the pharmaceutical sciences: sixth edition. https://doi.org/10.1201/9780203644478.ch8
Sudajana, F. L., Utomo, A. R., & Kusumawati, N. (2013). Pengaruh penambahan berbagai konsentrasi Na-CMC terhadap sifat fisikokimia dan organoleptik es krim sari biji nangka. Journal of Food Technology and Nutrition, 12(1), 47–54
Teshome, G., Keba, A., Assefa, Z., Agza, B., & Kassa, F. (2017). Development of fruit flavored yoghurt with mango (Mangifera indica L.) and papaya (Carica papaya L.) fruits juices. ISSN, 67(February 2018), 2224–6088. www.iiste.org
Tokusoglu, O., & Yildirim, Z. (2012). Effects of cooking methods on the anthocyanin levels and antioxidant activity of a local Turkish sweetpotato [Ipomoea batatas (L.) Lam] cultivar Hatay Kirmizi: Boiling, steaming and frying effects. Turkish Journal of Field Crops, 17(1), 87–90. https://doi.org/10.17557/tjfc.88075
Tsuda, T. (2016). Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants, 5(2), 13. https://doi.org/10.3390/antiox5020013
Yang, Z. wei, Tang, C. e., Zhang, J. liang, Zhou, Q., & Zhang, Z. cheng. (2019). Stability and antioxidant activity of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8) subjected to simulated in vitro gastrointestinal digestion. International Journal of Food Science and Technology, 54(8), 2604–2614. https://doi.org/10.1111/ijfs.14172
Zhao, J. G., Yan, Q. Q., Lu, L. Z., & Zhang, Y. Q. (2013). In vivo antioxidant, hypoglycemic, and anti-tumor activities of anthocyanin extracts from purple sweet potato. Nutrition Research and Practice, 7(5), 359–365. https://doi.org/10.4162/nrp.2013.7.5.359
Downloads
Published
Issue
Section
License
Authors who publish with Pharmaciana agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.