Synthesis and virtual screening of bis-(4-(tert-butyl)-N-(methylcarbamothioyl) benzamide)-Iron (III) complex as an anticancer candidate
DOI:
https://doi.org/10.12928/pharmaciana.v11i1.17837Keywords:
Complex, Docking, Fe (III Metal), Synthesis, 4-(Tert-Butyl)-N-(Methylcarbamothioyl) BenzamideAbstract
Thiourea derivatives were much used in drug discovery and drug-making, such as for an anticancer. The formation of drug complexes can increase lipophilicity through chelation formation, and the drug action is significantly upward due to the effective permeability to the center. In another study, the alteration of the compound becomes the complex with metal will grow in its activity so recently we have synthesized the Bis-(4-(Tert-Butyl)-N-(Methylcarbamothioyl) Benzamide)-Iron (III) complex. The synthesis of Fe (III) metal with the 4-(Tert-Butyl)-N-(Methylcarbamothioyl) Benzamide in ethanol by reflux at 75oC for 7 hours. Hot Stage Microscopy, UV-Visible Spectrophotometry Infrared Spectrophotometry, and Massa Spectrophotometry were used to characterize the complex. This study concerns representing, inferring, and predicting pharmacokinetics and toxicity and molecular docking complexes. The complex weight was 0.29469 g. Its purity has been tested using the melting point determination and has obtained its range was 113o-115oC. The Characteristics of Bis-(4-(Tert-Butyl)-N-(Methylcarbamothioyl) Benzamide)-Iron(III) complex have a maximum wavelength of 260,0 nm and provide absorption of Fe-O vibrations at wavenumbers 478,2 cm-1and 588 cm-1, and the m/z complex of spectrophotometry mass was 559,31. The molecular docking process was performed using AutodockTools-1.5.6 software. It showed that Bis-(4-(Tert-Butyl)-N-(Methylcarbamo-thioyl)Benzamide)-Iron(III) complex could interact with ribonucleotide reductase enzyme, and it has better interaction than the 4-(Tert-Butyl)-N-(Methylcarbamothioyl)Benzamide with the binding affinity energy (ΔG)of  -8,52 kcal/mole and the constant inhibition (Ki ) of 568,55 nM.
References
Bielenica, A., Drzewiecka-Antonik, A., Rejmak, P., Stefańska, J., Koliński, M., Kmiecik, S., Lesyng, B., Włodarczyk, M., Pietrzyk, P., & Struga, M. (2018). Synthesis, structural and antimicrobial studies of type II topoisomerase-targeted copper(II) complexes of 1,3-disubstituted thiourea ligands. Journal of Inorganic Biochemistry, 182, 61–70. https://doi.org/10.1016/j.jinorgbio.2018.01.005
Binzet, G., Gumus, I., Dogen, A., Flörke, U., Kulcu, N., & Arslan, H. (2018). Nickel(II) and copper(II) complexes of N,N-dialkyl-N′-3-chlorobenzoylthiourea: Synthesis, characterization, crystal structures, Hirshfeld surfaces and antimicrobial activity. Journal of Molecular Structure, 1161, 519–529. https://doi.org/10.1016/j.molstruc.2018.02.073
Brown, J. R., North, E. J., Hurdle, J. G., Morisseau, C., Scarborough, J. S., Sun, D., Korduláková, J., Scherman, M. S., Jones, V., Grzegorzewicz, A., Crew, R. M., Jackson, M., McNeil, M. R., & Lee, R. E. (2011). The structure–activity relationship of urea derivatives as anti-tuberculosis agents. Bioorganic & Medicinal Chemistry, 19(18), 5585–5595. https://doi.org/10.1016/j.bmc.2011.07.034
Burmistrov, V., Morisseau, C., Pitushkin, D., Karlov, D., Fayzullin, R. R., Butov, G. M., & Hammock, B. D. (2018). Adamantyl thioureas as soluble epoxide hydrolase inhibitors. Bioorganic & Medicinal Chemistry Letters, 28(13), 2302–2313. https://doi.org/10.1016/j.bmcl.2018.05.024
Do Couto Almeida, J., Marzano, I. M., Pivatto, M., Lopes, N. P., Da Costa Ferreira, A. M., Pavan, F. R., Silva, I. C., Pereira-Maia, E. C., Von Poelhsitz, G., & Guerra, W. (2016). Synthesis, cytotoxic and antitubercular activities of copper(II) complexes with heterocyclic bases and 3-hydroxypicolinic acid. Inorganica Chimica Acta, 446, 87–92. https://doi.org/10.1016/j.ica.2016.03.005
DomÃnguez, J. N., León, C., Rodrigues, J., Gamboa de DomÃnguez, N., Gut, J., & Rosenthal, P. J. (2005). Synthesis and Evaluation of New Antimalarial Phenylurenyl Chalcone Derivatives. Journal of Medicinal Chemistry, 48(10), 3654–3658. https://doi.org/10.1021/jm058208o
Karakuş, S., Güniz Küçükgüzel, Ş., Küçükgüzel, İ., De Clercq, E., Pannecouque, C., Andrei, G., Snoeck, R., Şahin, F., & Faruk Bayrak, Ö. (2009). Synthesis, antiviral and anticancer activity of some novel thioureas derivedfrom N-(4-nitro-2-phenoxyphenyl)-methanesulfonamide. European Journal of Medicinal Chemistry, 44(9), 3591–3595. https://doi.org/10.1016/j.ejmech.2009.02.030
Khan, S. A., Singh, N., & Saleem, K. (2008). Synthesis, characterization and in vitro antibacterial activity of thiourea and urea derivatives of steroids. European Journal of Medicinal Chemistry, 43(10), 2272–2277. https://doi.org/10.1016/j.ejmech.2007.12.012
Lan, J., Huang, L., Lou, H., Chen, C., Liu, T., Hu, S., Yao, Y., Song, J., Luo, J., Liu, Y., Xia, B., Xia, L., Zeng, X., Ben-David, Y., & Pan, W. (2018). Design and synthesis of novel C14-urea-tetrandrine derivatives with potent anti-cancer activity. European Journal of Medicinal Chemistry, 143, 1968–1980. https://doi.org/10.1016/j.ejmech.2017.11.007
Lin, P. Z., Chun, L. C., Zhou, J., Ming, X. L., & Yan, J. W. (2008). Synthesis, crystal structure and antitumor study of an iron(III) complex of 2-acetylpyrazine N(4)-methylthiosemicarbazone. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 63(11), 1257–1261. https://doi.org/10.1515/znb-2008-1103
Manjula, S. N., Malleshappa Noolvi, N., Vipan Parihar, K., Manohara Reddy, S. A., Ramani, V., Gadad, A. K., Singh, G., Gopalan Kutty, N., & Mallikarjuna Rao, C. (2009). Synthesis and antitumor activity of optically active thiourea and their 2-aminobenzothiazole derivatives: A novel class of anticancer agents. European Journal of Medicinal Chemistry, 44(7), 2923–2929. https://doi.org/10.1016/j.ejmech.2008.12.002
Mardianingrum, R., Susanti, & Ruswanto, R. (2019). Bis(N′-(3-chlorobenzoyl)isonicotinohydrazide)iron(III) Complex. Molbank, 2020(1), M1101. https://doi.org/10.3390/M1101
North, E. J., Scherman, M. S., Bruhn, D. F., Scarborough, J. S., Maddox, M. M., Jones, V., Grzegorzewicz, A., Yang, L., Hess, T., Morisseau, C., Jackson, M., McNeil, M. R., & Lee, R. E. (2013). Design, synthesis and anti-tuberculosis activity of 1-adamantyl-3-heteroaryl ureas with improved in vitro pharmacokinetic properties. Bioorganic & Medicinal Chemistry, 21(9), 2587–2599. https://doi.org/10.1016/j.bmc.2013.02.028
Nursamsiar, Toding, A. T., & Awaluddin, A. (2016). Studi in silico senyawa turunan analog kalkon dan pirimidin sebagai antiinflamasi: prediksi absorpsi, distribusi dan toksisitas. Pharmacy, 13(1), 92–100.
Pal, S., Kumar, V., Kundu, B., Bhattacharya, D., Preethy, N., Reddy, M. P., & Talukdar, A. (2019). Ligand-based Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Discovery of Potential Topoisomerase I Inhibitors. Computational and Structural Biotechnology Journal, 17, 291–310. https://doi.org/10.1016/j.csbj.2019.02.006
Pingaew, R., Prachayasittikul, V., Anuwongcharoen, N., Prachayasittikul, S., Ruchirawat, S., & Prachayasittikul, V. (2018). Synthesis and molecular docking of N,N′-disubstituted thiourea derivatives as novel aromatase inhibitors. Bioorganic Chemistry, 79, 171–178. https://doi.org/10.1016/j.bioorg.2018.05.002
Rao, C. N. R., & Venkataraghavan, R. (1962). The C=S stretching frequency and the “-N-C=S bands†in the infrared. Spectrochimica Acta, 18(4), 541–547. https://doi.org/10.1016/S0371-1951(62)80164-7
Ren, F., Zhong, Y., Mai, X., Liao, Y. J., Liu, C., Feng, L. H., Sun, W., Zen, W. Bin, Liu, W. M., Liu, J., & Jin, N. (2014). Synthesis and Anticancer Evaluation of Benzyloxyurea Derivatives. Chemical and Pharmaceutical Bulletin, 62(9), 898–905. https://doi.org/10.1248/cpb.c14-00305
RI, K. (2019). Hari Kanker Sedunia 2019. Kementerian Kesehatan Republik Indonesia.
Rozano, L., Abdullah Zawawi, M. R., Ahmad, M. A., & Jaganath, I. B. (2017). Computational Analysis of Gynura bicolor Bioactive Compounds as Dipeptidyl Peptidase-IV Inhibitor. Advances in Bioinformatics, 2017, 1–16. https://doi.org/10.1155/2017/5124165
Ruswanto, R., Mardianingrum, R., Lestari, T., Nofianti, T., & Siswandono, S. (2018). 1-(4-Hexylbenzoyl)-3-methylthiourea. Molbank, 2018(3), M1005. https://doi.org/10.3390/M1005
Ruswanto, R., Sarwatiningsih, Y., Pratita, A., Indra, & Dewi, R. (2019). Synthesis and Characterization of Fe(III) Complex with N’- (3-Nitrobenzoyl)Isonicotinohydrazide as an Anti-tuberculosis Candidate. Journal of Physics: Conference Series, 1179, 012136. https://doi.org/10.1088/1742-6596/1179/1/012136
Santos, A. F. M., Macedo, L. J. A., Chaves, M. H., Espinoza-Castañeda, M., Merkoçi, A., Lima, F. das C. A., & Cantanhêde, W. (2015). Hybrid Self-Assembled Materials Constituted by Ferromagnetic Nanoparticles and Tannic Acid: a Theoretical and Experimental Investigation. Journal of the Brazilian Chemical Society. https://doi.org/10.5935/0103-5053.20150322
Saratovskikh, E. A., Psikha, B. L., & Sanina, N. A. (2013). The reaction of the iron thiosulfate-nitrosyl complex with adenosine triphosphoric acid. Natural Science, 05(07), 800–810. https://doi.org/10.4236/ns.2013.57097
Sartori, E., Camy, F., Teulon, J., Camborde, F., Meignen, J., Hertz, F., & Cloarec, A. (1994). Synthesis and analgesic activities of urea derivatives of α-amino-N-pyridyl benzene propanamide. European Journal of Medicinal Chemistry, 29(6), 431–439. https://doi.org/10.1016/0223-5234(94)90070-1
Schwartz, B. D., Skinner-Adams, T. S., Andrews, K. T., Coster, M. J., Edstein, M. D., MacKenzie, D., Charman, S. A., Koltun, M., Blundell, S., Campbell, A., Pouwer, R. H., Quinn, R. J., Beattie, K. D., Healy, P. C., & Davis, R. A. (2015). Synthesis and antimalarial evaluation of amide and urea derivatives based on the thiaplakortone A natural product scaffold. Organic and Biomolecular Chemistry, 13(5), 1558–1570. https://doi.org/10.1039/c4ob01849d
Seth, P. P., Ranken, R., Robinson, D. E., Osgood, S. A., Risen, L. M., Rodgers, E. L., Migawa, M. T., Jefferson, E. A., & Swayze, E. E. (2004). Aryl urea analogs with broad-spectrum antibacterial activity. Bioorganic and Medicinal Chemistry Letters, 14(22), 5569–5572. https://doi.org/10.1016/j.bmcl.2004.08.059
Å imek, M., Grünwaldová, V., & KratochvÃl, B. (2014). Hot-Stage Microscopy for Determination of API Particles in a Formulated Tablet. BioMed Research International, 2014, 1–6. https://doi.org/10.1155/2014/832452
Upadhayaya, R. S., Kulkarni, G. M., Vasireddy, N. R., Vandavasi, J. K., Dixit, S. S., Sharma, V., & Chattopadhyaya, J. (2009). Design, synthesis and biological evaluation of novel triazole, urea and thiourea derivatives of quinoline against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry, 17(13), 4681–4692. https://doi.org/10.1016/j.bmc.2009.04.069
Vega-Pérez, J. M., Periñán, I., Argandoña, M., Vega-Holm, M., Palo-Nieto, C., Burgos-Morón, E., López-Lázaro, M., Vargas, C., Nieto, J. J., & Iglesias-Guerra, F. (2012). Isoprenyl-thiourea and urea derivatives as new farnesyl diphosphate analogues: Synthesis and in vitro antimicrobial and cytotoxic activities. European Journal of Medicinal Chemistry, 58, 591–612. https://doi.org/10.1016/j.ejmech.2012.10.042
Wang, X., & Andrews, L. (2006). Infrared Spectra of M(OH) 1,2,3 (M = Mn, Fe, Co, Ni) Molecules in Solid Argon and the Character of First Row Transition Metal Hydroxide Bonding. The Journal of Physical Chemistry A, 110(33), 10035–10045. https://doi.org/10.1021/jp0624698
World Health Organitazion. (2018). Raised cholesterol.
Xu, H., Faber, C., Uchiki, T., Racca, J., & Dealwis, C. (2006). Structures of eukaryotic ribonucleotide reductase I define gemcitabine diphosphate binding and subunit assembly. Proceedings of the National Academy of Sciences, 103(11), 4028–4033. https://doi.org/10.1073/pnas.0600440103
Yamashita, S., Furubayashi, T., Kataoka, M., Sakane, T., Sezaki, H., & Tokuda, H. (2000). Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. European Journal of Pharmaceutical Sciences, 10(3), 195–204. https://doi.org/10.1016/S0928-0987(00)00076-2
Yang, W., Hu, Y., Yang, Y. S., Zhang, F., Zhang, Y. Bin, Wang, X. L., Tang, J. F., Zhong, W. Q., & Zhu, H. L. (2013). Design, modification and 3D QSAR studies of novel naphthalin-containing pyrazoline derivatives with/without thiourea skeleton as anticancer agents. Bioorganic and Medicinal Chemistry, 21(5), 1050–1063. https://doi.org/10.1016/j.bmc.2013.01.013
Yao, J., Chen, J., He, Z., Sun, W., & Xu, W. (2012). Design, synthesis and biological activities of thiourea containing sorafenib analogs as antitumor agents. Bioorganic and Medicinal Chemistry, 20(9), 2923–2929. https://doi.org/10.1016/j.bmc.2012.03.018
Yee, S. (1997). In vitro permeability across caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—fact or myth. Pharmaceutical Research, 14(4), 763–766.
Zhao, Y. H., Le, J., Abraham, M. H., Hersey, A., Eddershaw, P. J., Luscombe, C. N., Boutina, D., Beck, G., Sherborne, B., Cooper, I., & Platts, J. A. (2001). Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure–activity relationship (QSAR) with the Abraham descriptors. Journal of Pharmaceutical Sciences, 90(6), 749–784. https://doi.org/10.1002/jps.1031
Downloads
Published
Issue
Section
License
Authors who publish with Pharmaciana agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.