Identification of Phyllanthus niruri by FTIR spectroscopy with chemometrics

Authors

  • Kartini Kartini Faculty of Pharmacy University of Surabaya
  • Devi Hardianti Faculty of Pharmacy University of Surabaya
  • Mochammad Arbi Hadiyat Faculty of Engineering, University of Surabaya

DOI:

https://doi.org/10.12928/pharmaciana.v11i2.15954

Keywords:

CA, chemometric, fingerprint, PCA, Phyllanthus niruri, quality control

Abstract

Phyllanthus niruri (Indonesian: meniran) is a crude drug used in scientific jamu for hyperuricemia, mild hypertension, osteoarthritis, hemorrhoids, and hypercholesterolemia. This plant contains various bioactive compounds such as flavonoids, terpenes, coumarins, lignans, tannins, saponins, alkaloids, etc. Phyllanthus niruri is a wild plant growing in the tropics and sub-tropics of Asia, America, and China. This herb grows well from the lowlands to the highlands, such as bushes, terrain, yards, roadsides, gardens, and rivers. The levels of active compounds in a plant can vary depending on many factors, such as growing location, temperature, humidity, rainfall, and others. This research aimed to evaluate and differentiate P. niruri herbs according to their geographical location using FTIR fingerprint coupled with chemometrics, Principal Component Analysis (PCA) and Cluster Analysis (CA). The results of this study showed that 14 samples of P. niruri are classified into two groups. The first group consists of P. niruri powder originating from Tawangmangu, Kediri, Surabaya, Bangkalan, Gresik, Mojokerto, Kertosono, Krian, Blitar, Nganjuk, unknown 1, unknown 2, and unknown 3, whereas the second group consists of only one sample from Pasuruan. In conclusion, FTIR fingerprint analyzed with chemometrics is adequate to differentiate the powder of P. niruri collected from different locations. FTIR fingerprints combined with chemometrics can be further considered as a method in the quality control process of P. niruri.

Author Biographies

Kartini Kartini, Faculty of Pharmacy University of Surabaya

Department of Pharmaceutical Biology

Devi Hardianti, Faculty of Pharmacy University of Surabaya

Department of Pharmaceutical Biology

Mochammad Arbi Hadiyat, Faculty of Engineering, University of Surabaya

Department of Industrial Engineering

References

Bagalkotkar, G., Sagineedu, S., Saad, M., & Stanslas, J. (2006). Phytochemicals from Phyllanthus niruri Linn. and their Pharmacological Properties: A Review. Journal of Pharmacy and Pharmacology, 58(12), 1559-1570. https://doi.org/10.1211/jpp.58.12.0001

Christou, C., Agapiou, A., & Kokkinofta, R. (2018). Use of FTIR Spectroscopy and Chemometrics for the Classification of Carobs Origin. Journal of Advanced Research, 10, 1-8

De Luca, M., Terouzi, W., Ioele, G., Kzaiber, F., Oussama, A., Oliverio, F., . . . Ragno, G. (2011). Derivative FTIR Spectroscopy for cluster analysis and classification of morocco olive oils. Food Chemistry, 124(3), 1113-1118. https://doi.org/10.1016/j.foodchem.2010.07.010

Gad, H. A., El-Ahmady, S. H., Abou-Shoer, M. I., & Al-Azizi, M. M. (2013). Application of chemometrics in authentication of herbal medicines: a review. Phytochemical Analysis, 24(1), 1-24. https://doi.org/10.1002/pca.2378

Kamruzzaman, H. M., & Hoq, O. (2016). A review on ethnomedicinal, phytochemical and pharmacological properties of Phyllanthus niruri. Journal of Medicinal Plants Studies, 4(6), 173-180

Kartini, K., Avanti, C., Phechkrajang, C., & Vallisuta, O. (2019). Antioxidant activity, HPTLC Fingerprint, and discriminant analysis of plantago major leaves from diverse origins in Indonesia. Pharmacognosy Journal, 11(6Suppl), 1483-1489. http://www.phcogj.com/

Man, S., Kiong, L. S., Abâ, N. A., & Abdullah, Z. (2015). Differentiation of the White and Purple Flower Forms of Orthosiphon Aristatus (Blume) Miq. BY 1D and 2D Correlation IR Spectroscopy. Jurnal Teknologi, 77(3), 81-86. https://doi.org/10.11113/jt.v77.6010

Pisano, P. L., Silva, M. F., & Olivieri, A. C. (2015). Anthocyanins as markers for the classification of argentinean wines according to botanical and geographical origin. Chemometric Modeling of Liquid Chromatography–mass Spectrometry Data. Food Chemistry, 175, 174-180. https://doi.org/10.1016/j.foodchem.2014.11.124

RI, D. (2017). Farmakope Herbal Indonesia Edisi II. Jakarta: Departemen Kesehatan Republik Indonesia

Rohman, A., Riyanto, S., Sasi, A. M., & Yusof, F. M. (2014). The Use of FTIR Spectroscopy in combination with chemometrics for the authentication of red fruit (Pandanus conoideus Lam) Oil from Sunflower and Palm Oils. Food Bioscience, 7, 64-70. https://doi.org/10.1016/j.fbio.2014.05.007

Saraf, A., Saraf, A., & Chaturvedi, A. (2018). Phytochemical analysis and chemical fingerprinting of seeds of abrus precatorius L. Chemical Science Transactions, 7(1), 63-70. DOI:10.7598/cst2018.1460

Siswanto, S. (2012). Saintifikasi jamu sebagai upaya terobosan untuk mendapatkan bukti ilmiah tentang manfaat dan keamanan jamu. Buletin Penelitian Sistem Kesehatan, 15(2 Apr)

Sun, S., Chen, J., Zhou, Q., Lu, G., & Chan, K. (2010). Application of mid-infrared spectroscopy in the quality control of traditional chinese medicines. Planta medica, 76(17), 1987-1996. DOI: 10.1055/s-0030-1250520

Tistaert, C., Dejaegher, B., & Heyden, Y. V. (2011). Chromatographic separation techniques and data handling methods for herbal fingerprints: a review. Analytica Chimica Acta, 690(2), 148-161. https://doi.org/10.1016/j.aca.2011.02.023

Triyono, A. (2016). Tujuh ramuan jamu saintifik - pemanfaatan mandiri oleh masyarakat. Jakarta: Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan

WHO. (1998). Quality control methods for medicinal plant materials

Yang, J., Chen, L. H., Zhang, Q., Lai, M. X., & Wang, Q. (2007). Quality assessment of cortex cinnamomi by hplc chemical fingerprint, principle component analysis and cluster analysis. Journal of Separation Science, 30(9), 1276-1283. https://doi.org/10.1002/jssc.200600389

Yudthavorasit, S., Wongravee, K., & Leepipatpiboon, N. (2014). Characteristic fingerprint based on gingerol derivative analysis for discrimination of Ginger (Zingiber officinale) According to Geographical Origin Using HPLC-DAD combined with chemometrics. Food Chemistry, 158, 101-111. https://linkinghub.elsevier.com/retrieve/pii/S0308814614002714

Downloads

Published

2021-07-30

Issue

Section

Biology Pharmacy