Antioxidant and antiaging activity of rutin and caffeic acid
DOI:
https://doi.org/10.12928/pharmaciana.v10i2.13010Keywords:
antiaging, antioxidant, caffeic acid, rutinAbstract
Aging is a complicated process occurring due to the combination of incremental alterations of the skin and accumulated extrinsic factors that causes both structural and functional disruptions. The extrinsic factor of skin aging is mostly caused by free radicals, UV exposures, and pollution. Prevention is possible by escalating antioxidant intake to scavenge ROS in the skin aging process. Rutin and caffeic acid are recognized for their free radical trapping effects and reported to have potential antiaging activities. This study aimed to identify the potentials of rutin and caffeic acid as antioxidant and antiaging. Rutin and caffeic acid were tested for their antioxidant properties using the DPPH, H2O2, ABTS radical scavenging, and FRAP assays. Meanwhile, their antiaging activities were examined by collagenase, elastase, hyaluronidase, and tyrosinase inhibitory assays. The study drew on the evidence of antioxidant and antiaging properties from the scavenging, ferric ion reducing, and inhibitory activities of rutin and caffeic acid (in ascending order): in scavenging DPPH free radicals (IC50 of rutin = 5.79 µg/mL, IC50 of caffeic acid = 8.72 µg/mL), scavenging H2O2 ( IC50 rutin = 12.09 µg/ml, IC50 caffeic acid = 15.23 µg/mL), reducing ABTS (IC50 caffeic acid = 6.23 µg/mL, IC50 rutin = 16.59 µg/mL), reducing ferric ions at 50 µg/mL (FRAP of rutin = 480.08 µM Fe(II)/µg, FRAP of caffeic acid= 526.50 µM Fe(II)/µg), inhibiting collagenase (IC50 caffeic acid = 74.42 µg/mL, IC50 rutin = 104.70 µg/mL), inhibiting elastase (IC50 rutin = 46.88 µg/mL, IC50 caffeic acid = 76.95 µg/mL), inhibiting tyrosinase (IC50 rutin = 55.65 µg/mL, IC50 caffeic acid = 145.91 µg/mL), and inhibiting hyaluronidase (IC50 rutin = 114.07 µg/mL, IC50 caffeic acid= 244.45 µg/mL). Rutin and caffeic acid have the potentials as antiaging and antioxidant.
References
Asan, T., Lister, I. N. E., Fachrial, E., Amalia, A., Widowati, W., Samin, B., & Liena, L. (2019). Potency of black soybean (Glycine max (L.) Merr) extract and daidzein as antioxidant and antihyaluronidase. Majalah Obat Tradisional, 24(1), 52–58. https://doi.org/10.22146/mot.43615
Bastianini, M., Faffa, C., Sisani, M., & Petracci, A. (2018). Caffeic acid-layered double hydroxide hybrid: a new raw material for cosmetic applications. Cosmetics, 5(3), 51. https://doi.org/10.3390/cosmetics5030051
Cervantes-Laurean, D., Schramm, D. D., Jacobson, E. L., Halaweish, I., Bruckner, G. G., & Boissonneault, G. A. (2006). Inhibition of advanced glycation end product formation on collagen by rutin and its metabolites. The Journal of Nutritional Biochemistry, 17(8), 531–540. https://doi.org/10.1016/j.jnutbio.2005.10.002
Farage, M. A., Miller, K. W., Berardesca, E., & Maibach, H. I. (2009). Clinical implications of aging skin. American Journal of Clinical Dermatology, 10(2), 73–86. https://doi.org/10.2165/00128071-200910020-00001
Geeta, Widodo, W. S., Widowati, W., Ginting, C. N., Lister, I. N. E., Armansyah, A., & Girsang, E. (2019). Comparison of antioxidant and anti-collagenase activity of genistein and epicatechin. Pharmaceutical Sciences and Research, 6(2), 111–117. https://doi.org/10.7454/psr.v6i2.4510
Genaro-Mattos, T. C., MaurÃcio, Â. Q., Rettori, D., Alonso, A., & Hermes-Lima, M. (2015). Correction: Antioxidant activity of caffeic acid against iron-induced free radical generation—a chemical approach. Plos One, 10(6), e0129963. https://doi.org/10.1371/journal.pone.0129963
Girsang, E., Ginting, C. N., Ehrich Lister, I. N., Widowati, W., Wibowo, S. H. B., Perdana, F. S., & Rizal, R. (2019). In silico analysis of phytochemical compound found in snake fruit (Salacca zalacca) peel as anti-aging agent. Thai Journal of Pharmaceutical Sciences, 43(2), 105–109.
Girsang, E., Lister, I. N. E., Ginting, C. N., Khu, A., Samin, B., Widowati, W., Wibowo, S., & Rizal, R. (2019). Chemical Constituents of snake fruit (Salacca zalacca (Gaert.) Voss) peel and in silico antiaging analysis. Molecular and Cellular Biomedical Sciences, 3(2), 122. https://doi.org/10.21705/mcbs.v3i2.80
Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481–504. https://doi.org/10.1016/S0031-9422(00)00235-1.
Jusri, R., Widodo, W. S., Widowati, W., Armansyah, A., Sormin, D. E., Fachrial, E., & Lister, I. N. E. (2019). Comparison of antioxidant and anti-hyaluronidase potentials of pineapple core extract (Ananas comosus (L.) Merr.) and luteolin. Majalah Kedokteran Bandung, 51(2), 63–69. https://doi.org/10.15395/mkb.v51n2.1629.
Khan, F. A., Maalik, A., & Murtaza, G. (2016). Inhibitory mechanism against oxidative stress of caffeic acid. Journal of Food and Drug Analysis, 24(4), 695–702. https://doi.org/10.1016/j.jfda.2016.05.003
Li, T., Chen, S., Feng, T., Dong, J., Li, Y., & Li, H. (2016). Rutin protects against aging-related metabolic dysfunction. Food & Function, 7(2), 1147–1154. https://doi.org/10.1039/C5FO01036E
Liana, L., Rizal, R., Widowati, W., Fioni, F., Akbar, K., Fachrial, E., & Lister, I. N. E. (2019). Antioxidant and anti-hyaluronidase activities of dragon fruit peel extract and kaempferol-3-O rutinoside. Jurnal Kedokteran Brawijaya, 30(4), 247–252. https://doi.org/10.21776/ub.jkb.2019.030.04.3.
Madan, K., & Nanda, S. (2018). In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging. Bioorganic Chemistry, 77(1), 159–167. https://doi.org/10.1016/j.bioorg.2017.12.030
Masek, A., Chrzescijanska, E., & Latos, M. (2016). Determination of antioxidant activity of caffeic acid and p-coumaric acid by using electrochemical and spectrophotometric assays. International Journal of Electrochemical Science, 11(1), 10644–10658. https://doi.org/10.20964/2016.12.73.
Onar, H. C., Yusufoglu, A., Turker, G., & Yanardag, R. (2012). Elastase, tyrosinase and lipoxygenase inhibition and antioxidant activity of an aqueous extract from Epilobium angustifolium L. leaves. Journal of Medicinal Plants Research, 6(5), 716–726. https://doi.org/10.5897/JMPR11.1127.
Palmer, D. M., & Kitchin, J. S. (2010). Oxidative damage, skin aging, antioxidants and a novel antioxidant rating system. Journal of Drugs in Dermatology, 9(1), 11–15.
Papakonstantinou, E., Roth, M., & Karakiulakis, G. (2012). Hyaluronic acid: a key molecule in skin aging. Dermato-Endocrinology, 4(3), 253–258. https://doi.org/10.4161/derm.21923
Riani, M. K. L., Anwar, E., & Nurhayati, T. (2018). Antioxidant and anti-collagenase activity of Sargassum plagyophyllum extract as an anti-wrinkle cosmetic ingredient. Pharmacognosy Journal, 10(5), 932–936. https://doi.org/10.5530/pj.2018.5.157.
Rusmana, D., Wahyudianingsih, R., Elisabeth, M., Balqis, B., Maesaroh, M., & Widowati, W. (2017). Antioxidant activity of Phyllanthus niruri extract, rutin and quercetin. The Indonesian Biomedical Journal, 9(2), 84–90. https://doi.org/10.18585/inabj.v9i2.281.
Sintayehu, B., Asres, K., & Raghavendra, Y. (2012). Radical scavenging activities of the leaf extracts and a flavonoid glycoside isolated from Cineraria abyssinica Sch. Bip. Exa. Rich. Journal of Applied Pharmaceutical Science, 2(4), 44–49. https://doi.org/10.7324/JAPS.2012.2407.
Siregar, I. D., Kusuma, H. S. W., Widowati, W., Marpaung, H. H., Ferdinand, S., Fachrial, E., & Lister, I. N. E. (2019). Antioxidant and antityrosinase activities of ethanolic Pachyrhizus erosus peel and tuber extract. Majalah Kedokteran Bandung, 51(2), 75–81. https://doi.org/10.15395/mkb.v51n2.1628.
Taofiq, O., González-Paramás, A. M., Martins, A., Barreiro, M. F., & Ferreira, I. C. F. R. (2016). Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—a review. Industrial Crops and Products, 90, 38–48. https://doi.org/10.1016/j.indcrop.2016.06.012.
Thring, T. S., Hili, P., & Naughton, D. P. (2009). Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complementary and Alternative Medicine, 9(1), 27. https://doi.org/10.1186/1472-6882-9-27.
Utami, S., Adityaningsari, P., Sosiawan, I., Endrini, S., Sachrowardi, Q. R., Laksono, S. P., Nafik, S., Arrahmani, B. C., Afifah, E., & Widowati, W. (2017). Antioxidants and anticholinesterase activities of the characterized ethanolic of ripe sesoot (Garcinia picrorrhiza Miq.) fruit extract (GpKar) and xanthone. Majalah Obat Tradisional, 22(3), 160–165. https://doi.org/10.22146/mot.31548.
Vrianty, D., Qodariah, R. L., Widowati, W., Sinaga, A. P. F., Fibrina, D., Fachrial, E., & Lister, I. N. E. (2019). Comparison of Antioxidant and anti-tyrosinase activities of pineapple (Ananas comosus) core extract and luteolin compound. Jurnal Kedokteran Brawijaya, 30(4), 240. https://doi.org/10.21776/ub.jkb.2019.030.04.2.
Widowati, W., Fauziah, N., Herdiman, H., Afni, M., Afifah, E., Kusuma, H. S. W., Nufus, H., Arumwardana, S., & Rihibiha, D. D. (2016). Antioxidant and antiaging assays of Oryza sativa extracts, vanilin, and coumaric acid. Journal of Natural Remedies, 16(3), 88–99. https://doi.org/10.18311/jnr/2016/7220.
Widowati, W., Rani, A. P., Hamzah, R. A., Arumwardana, S., Afifah, E., Kusuma, H. S. W., Rihibiha, D. D., Nufus, H., & Amalia, A. (2017). Antioxidant and antiaging assays of Hibiscus sabdariffa extract and its compounds. Natural Product Sciences, 23(3), 192. https://doi.org/10.20307/nps.2017.23.3.192.
Widowati, W., Widya Janeva, B., Nadya, S., Amalia, A., Arumwardana, S., Kusuma, H. S. W., & Arinta, Y. (2018). Antioxidant and antiaging activities of Jasminum sambac extract, and its compounds. Journal of Reports in Pharmaceutical Sciences, 7(3), 270–285.
Yang, J., Guo, J., & Yuan, J. (2008). In vitro antioxidant properties of rutin. LWT - Food Science and Technology, 41(6), 1060–1066. https://doi.org/10.1016/j.lwt.2007.06.010.
Downloads
Published
Issue
Section
License
Authors who publish with Pharmaciana agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.