Antioxidant and antiaging activity of rutin and caffeic acid

Authors

  • Ermi Girsang Faculty of Medicine, University of Prima Indonesia, Medan, North Sumatera, Indonesia
  • I Nyoman Ehrich Lister Faculty of Medicine, University of Prima Indonesia, Medan, North Sumatera, Indonesia
  • Chrismis Novalinda Ginting Faculty of Medicine, University of Prima Indonesia, Medan, North Sumatera, Indonesia
  • Ika Adhani Sholihah Aretha Medika Utama (BBRC), Jalan Babakan Jeruk II No. 9, Bandung, West Java, Indonesia
  • Martinus Ahmad Raif Faculty of Medicine, University of Prima Indonesia, Medan, North Sumatera, Indonesia
  • Sidharta Kunardi Faculty of Medicine, University of Prima Indonesia, Medan, North Sumatera, Indonesia
  • Hendy Million Faculty of Medicine, University of Prima Indonesia, Medan, North Sumatera, Indonesia
  • Wahyu Widowati Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia

DOI:

https://doi.org/10.12928/pharmaciana.v10i2.13010

Keywords:

antiaging, antioxidant, caffeic acid, rutin

Abstract

Aging is a complicated process occurring due to the combination of incremental alterations of the skin and accumulated extrinsic factors that causes both structural and functional disruptions. The extrinsic factor of skin aging is mostly caused by free radicals, UV exposures, and pollution. Prevention is possible by escalating antioxidant intake to scavenge ROS in the skin aging process. Rutin and caffeic acid are recognized for their free radical trapping effects and reported to have potential antiaging activities. This study aimed to identify the potentials of rutin and caffeic acid as antioxidant and antiaging. Rutin and caffeic acid were tested for their antioxidant properties using the DPPH, H2O2, ABTS radical scavenging, and FRAP assays. Meanwhile, their antiaging activities were examined by collagenase, elastase, hyaluronidase, and tyrosinase inhibitory assays. The study drew on the evidence of antioxidant and antiaging properties from the scavenging, ferric ion reducing, and inhibitory activities of rutin and caffeic acid (in ascending order): in scavenging DPPH free radicals (IC50 of rutin = 5.79 µg/mL, IC50 of caffeic acid = 8.72 µg/mL), scavenging H2O2 ( IC50 rutin = 12.09 µg/ml, IC50 caffeic acid = 15.23 µg/mL), reducing ABTS (IC50 caffeic acid = 6.23 µg/mL, IC50 rutin = 16.59 µg/mL), reducing ferric ions at 50 µg/mL (FRAP of rutin = 480.08 µM Fe(II)/µg, FRAP of caffeic acid= 526.50 µM Fe(II)/µg), inhibiting collagenase (IC50 caffeic acid = 74.42 µg/mL, IC50 rutin = 104.70 µg/mL), inhibiting elastase (IC50 rutin = 46.88 µg/mL, IC50 caffeic acid = 76.95 µg/mL), inhibiting tyrosinase (IC50 rutin = 55.65 µg/mL, IC50 caffeic acid = 145.91 µg/mL), and inhibiting hyaluronidase (IC50 rutin = 114.07 µg/mL, IC50 caffeic acid= 244.45 µg/mL). Rutin and caffeic acid have the potentials as antiaging and antioxidant.

References

Asan, T., Lister, I. N. E., Fachrial, E., Amalia, A., Widowati, W., Samin, B., & Liena, L. (2019). Potency of black soybean (Glycine max (L.) Merr) extract and daidzein as antioxidant and antihyaluronidase. Majalah Obat Tradisional, 24(1), 52–58. https://doi.org/10.22146/mot.43615

Bastianini, M., Faffa, C., Sisani, M., & Petracci, A. (2018). Caffeic acid-layered double hydroxide hybrid: a new raw material for cosmetic applications. Cosmetics, 5(3), 51. https://doi.org/10.3390/cosmetics5030051

Cervantes-Laurean, D., Schramm, D. D., Jacobson, E. L., Halaweish, I., Bruckner, G. G., & Boissonneault, G. A. (2006). Inhibition of advanced glycation end product formation on collagen by rutin and its metabolites. The Journal of Nutritional Biochemistry, 17(8), 531–540. https://doi.org/10.1016/j.jnutbio.2005.10.002

Farage, M. A., Miller, K. W., Berardesca, E., & Maibach, H. I. (2009). Clinical implications of aging skin. American Journal of Clinical Dermatology, 10(2), 73–86. https://doi.org/10.2165/00128071-200910020-00001

Geeta, Widodo, W. S., Widowati, W., Ginting, C. N., Lister, I. N. E., Armansyah, A., & Girsang, E. (2019). Comparison of antioxidant and anti-collagenase activity of genistein and epicatechin. Pharmaceutical Sciences and Research, 6(2), 111–117. https://doi.org/10.7454/psr.v6i2.4510

Genaro-Mattos, T. C., Maurício, Â. Q., Rettori, D., Alonso, A., & Hermes-Lima, M. (2015). Correction: Antioxidant activity of caffeic acid against iron-induced free radical generation—a chemical approach. Plos One, 10(6), e0129963. https://doi.org/10.1371/journal.pone.0129963

Girsang, E., Ginting, C. N., Ehrich Lister, I. N., Widowati, W., Wibowo, S. H. B., Perdana, F. S., & Rizal, R. (2019). In silico analysis of phytochemical compound found in snake fruit (Salacca zalacca) peel as anti-aging agent. Thai Journal of Pharmaceutical Sciences, 43(2), 105–109.

Girsang, E., Lister, I. N. E., Ginting, C. N., Khu, A., Samin, B., Widowati, W., Wibowo, S., & Rizal, R. (2019). Chemical Constituents of snake fruit (Salacca zalacca (Gaert.) Voss) peel and in silico antiaging analysis. Molecular and Cellular Biomedical Sciences, 3(2), 122. https://doi.org/10.21705/mcbs.v3i2.80

Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481–504. https://doi.org/10.1016/S0031-9422(00)00235-1.

Jusri, R., Widodo, W. S., Widowati, W., Armansyah, A., Sormin, D. E., Fachrial, E., & Lister, I. N. E. (2019). Comparison of antioxidant and anti-hyaluronidase potentials of pineapple core extract (Ananas comosus (L.) Merr.) and luteolin. Majalah Kedokteran Bandung, 51(2), 63–69. https://doi.org/10.15395/mkb.v51n2.1629.

Khan, F. A., Maalik, A., & Murtaza, G. (2016). Inhibitory mechanism against oxidative stress of caffeic acid. Journal of Food and Drug Analysis, 24(4), 695–702. https://doi.org/10.1016/j.jfda.2016.05.003

Li, T., Chen, S., Feng, T., Dong, J., Li, Y., & Li, H. (2016). Rutin protects against aging-related metabolic dysfunction. Food & Function, 7(2), 1147–1154. https://doi.org/10.1039/C5FO01036E

Liana, L., Rizal, R., Widowati, W., Fioni, F., Akbar, K., Fachrial, E., & Lister, I. N. E. (2019). Antioxidant and anti-hyaluronidase activities of dragon fruit peel extract and kaempferol-3-O rutinoside. Jurnal Kedokteran Brawijaya, 30(4), 247–252. https://doi.org/10.21776/ub.jkb.2019.030.04.3.

Madan, K., & Nanda, S. (2018). In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging. Bioorganic Chemistry, 77(1), 159–167. https://doi.org/10.1016/j.bioorg.2017.12.030

Masek, A., Chrzescijanska, E., & Latos, M. (2016). Determination of antioxidant activity of caffeic acid and p-coumaric acid by using electrochemical and spectrophotometric assays. International Journal of Electrochemical Science, 11(1), 10644–10658. https://doi.org/10.20964/2016.12.73.

Onar, H. C., Yusufoglu, A., Turker, G., & Yanardag, R. (2012). Elastase, tyrosinase and lipoxygenase inhibition and antioxidant activity of an aqueous extract from Epilobium angustifolium L. leaves. Journal of Medicinal Plants Research, 6(5), 716–726. https://doi.org/10.5897/JMPR11.1127.

Palmer, D. M., & Kitchin, J. S. (2010). Oxidative damage, skin aging, antioxidants and a novel antioxidant rating system. Journal of Drugs in Dermatology, 9(1), 11–15.

Papakonstantinou, E., Roth, M., & Karakiulakis, G. (2012). Hyaluronic acid: a key molecule in skin aging. Dermato-Endocrinology, 4(3), 253–258. https://doi.org/10.4161/derm.21923

Riani, M. K. L., Anwar, E., & Nurhayati, T. (2018). Antioxidant and anti-collagenase activity of Sargassum plagyophyllum extract as an anti-wrinkle cosmetic ingredient. Pharmacognosy Journal, 10(5), 932–936. https://doi.org/10.5530/pj.2018.5.157.

Rusmana, D., Wahyudianingsih, R., Elisabeth, M., Balqis, B., Maesaroh, M., & Widowati, W. (2017). Antioxidant activity of Phyllanthus niruri extract, rutin and quercetin. The Indonesian Biomedical Journal, 9(2), 84–90. https://doi.org/10.18585/inabj.v9i2.281.

Sintayehu, B., Asres, K., & Raghavendra, Y. (2012). Radical scavenging activities of the leaf extracts and a flavonoid glycoside isolated from Cineraria abyssinica Sch. Bip. Exa. Rich. Journal of Applied Pharmaceutical Science, 2(4), 44–49. https://doi.org/10.7324/JAPS.2012.2407.

Siregar, I. D., Kusuma, H. S. W., Widowati, W., Marpaung, H. H., Ferdinand, S., Fachrial, E., & Lister, I. N. E. (2019). Antioxidant and antityrosinase activities of ethanolic Pachyrhizus erosus peel and tuber extract. Majalah Kedokteran Bandung, 51(2), 75–81. https://doi.org/10.15395/mkb.v51n2.1628.

Taofiq, O., González-Paramás, A. M., Martins, A., Barreiro, M. F., & Ferreira, I. C. F. R. (2016). Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—a review. Industrial Crops and Products, 90, 38–48. https://doi.org/10.1016/j.indcrop.2016.06.012.

Thring, T. S., Hili, P., & Naughton, D. P. (2009). Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. BMC Complementary and Alternative Medicine, 9(1), 27. https://doi.org/10.1186/1472-6882-9-27.

Utami, S., Adityaningsari, P., Sosiawan, I., Endrini, S., Sachrowardi, Q. R., Laksono, S. P., Nafik, S., Arrahmani, B. C., Afifah, E., & Widowati, W. (2017). Antioxidants and anticholinesterase activities of the characterized ethanolic of ripe sesoot (Garcinia picrorrhiza Miq.) fruit extract (GpKar) and xanthone. Majalah Obat Tradisional, 22(3), 160–165. https://doi.org/10.22146/mot.31548.

Vrianty, D., Qodariah, R. L., Widowati, W., Sinaga, A. P. F., Fibrina, D., Fachrial, E., & Lister, I. N. E. (2019). Comparison of Antioxidant and anti-tyrosinase activities of pineapple (Ananas comosus) core extract and luteolin compound. Jurnal Kedokteran Brawijaya, 30(4), 240. https://doi.org/10.21776/ub.jkb.2019.030.04.2.

Widowati, W., Fauziah, N., Herdiman, H., Afni, M., Afifah, E., Kusuma, H. S. W., Nufus, H., Arumwardana, S., & Rihibiha, D. D. (2016). Antioxidant and antiaging assays of Oryza sativa extracts, vanilin, and coumaric acid. Journal of Natural Remedies, 16(3), 88–99. https://doi.org/10.18311/jnr/2016/7220.

Widowati, W., Rani, A. P., Hamzah, R. A., Arumwardana, S., Afifah, E., Kusuma, H. S. W., Rihibiha, D. D., Nufus, H., & Amalia, A. (2017). Antioxidant and antiaging assays of Hibiscus sabdariffa extract and its compounds. Natural Product Sciences, 23(3), 192. https://doi.org/10.20307/nps.2017.23.3.192.

Widowati, W., Widya Janeva, B., Nadya, S., Amalia, A., Arumwardana, S., Kusuma, H. S. W., & Arinta, Y. (2018). Antioxidant and antiaging activities of Jasminum sambac extract, and its compounds. Journal of Reports in Pharmaceutical Sciences, 7(3), 270–285.

Yang, J., Guo, J., & Yuan, J. (2008). In vitro antioxidant properties of rutin. LWT - Food Science and Technology, 41(6), 1060–1066. https://doi.org/10.1016/j.lwt.2007.06.010.

Downloads

Published

2020-07-29

Issue

Section

Pharmacology